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Abstract

A new method for the determination of the local plasma emissivity on the basis of measuring of the
radiation intensity is presented. The method is related to the axial symmetric discharges with undefined
radius (free burning arcs, etc.). In this method, the experimental profile of the radiative intensity is
approximated by the linear combination of Gaussian functions, while the requested plasma emissivity is
obtained in a similar oblique. The essence of the presented method lies in the procedure of determination
of the coefficients in this linear combinations, as well as the parameters by which the exponents of
Gaussian functions are expressed. The method was tested on a large number of examples which are
related to almost all practically important cases of the profiles of local plasma emissivity. It was shown
that the method works with high precision, which makes it a certain tool for an operative laboratorial
application. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords. Discharge; Undefined radius; Abel’s inversion; Measured intensity; Local emissivity

1. Introduction

In this paper, we consider the problem of determination of the local plasma emissivity on
the basis of data related to intensity of emitted radiation. We will assume that observed plasma,
originated by a gaseous discharge with cylindrical symmetry, can be treated as optically thin.
The local plasma emissivity is denoted by &(r), where r is the distance from the symmetry axis
of discharge.

Usually, considered in the literature is the case where the observed plasma is located inside a
cylindrical area with radii R, i.e. when &(r)=0 for » > R. The cross section of such discharge
is shown in Fig. 1, where the symmetry axis of the observed discharge is taken as the z-axis of
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Fig. 1. Experimental set-up in the case of discharges with defined radius (R). Right hand side of the figure shows the
profile of measured intensity Y, with which Abel’s inversion procedure starts. B—discharge border. D—detector.

the Descartes originated system, the direction toward the detector of emitted radiation is taken
as the x-axis, and direction wherein scanning of the discharge is performed as the y-axis. It
is assumed that the distance between the z-axis and detector has to be much larger than the
discharge radius R. In this figure, as well as in whole paper, Y(**P) denotes the experimental
values of the quantity Y (y), which is proportional to the radiation intensity, and which is given
by relations

X(y)
Y(y)= / er(x,»))dx, r(ny)= V2 9, (1)
-X(y)

where X(y)=+/R? — y2. From here it follows that in the case when &(» > R)=0 the function
Y(y)=0 for y > R. Since the proportionality coefficient, which connects the real radiation
intensity with this function does not play any role in further considerations, we will treat just
Y(y) as the radiation intensity, as it is usual in the literature. Accordingly, the values of the
quantity Y*) will be treated as values of measured radiation intensity. Hence, the problem
which is considered here reduces at determination of the profile of local emissivity &(») on the
basis of the given data Y(&*),

In the case of discharges with defined radius the described problem is usually solved with
the help of a procedure based on Abel’s inversion [1,2]. In this procedure Y(y) is given by the
expression

R e(ryrdr
Y(»)=2 /y N @)
which is equivalent to (1), and emissivity &(r) is obtained afterwards in oblique
wy=-1 [TV b
)y dy /yr—2

(3)
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Fig. 2. Same as Fig. I, but in the case of discharge with undefined radius.

As one can see from these equations, the parameter R plays the essential role and it has the sense
of given discharge radii. However, one should have in mind such situations wherein precise
determination of this parameter could be connected with some difficulties. Such situations are
possible, above all, in the case of discharges which are free burning in the atmosphere of
some gas. The same situations are also possible, in the case of discharges which are stabilized
by walls, but where a wide intermediate layer exists near the wall, as well as in the case of
discharges which are burning in electrolytes. It is clear that in all such situations it would be
desirable to have a method wherein such parameter does not exist.

The exact aim of this paper is the presentation of such a method. The method is applicable in
the cases when the distance between discharge axis and radiation detector is much larger than
some effective radius R.q, so that the contribution of the area r > R,y to the measured radiation
intensity can be fully neglected. In fact, the surface radius R.s is somewhere in the bordering
layer, where the local emissivity decreases down to negligible level, as Fig. 2 illustrates.

The proposed method, of course, can be applied in the case when the conditions of experiment
allow determination of the parameter R. However, in this case (when the radius R automatically
takes the role of R.y), presented method can be of interest as an alternative to the methods
which are known from the literature [2], because it is not based on the standard polynomial
approximation of the functions Y(y), but on using Gaussian functions basis set.

2. Theory

We will start our consideration with the observation that &(r), in oblique (3), presents the
local emissivity only if Y(R) satisfies the boundary condition

Y(R)=0, (4)
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which is immediately proved by the substitution of Eq. (3) into Eq. (2). Namely, as a result
of such substitution (after performing all necessary integrations, and with the corresponding
replacement of variables) we obtain the relation [1]:

Y(y)=Y(y) - Y(R), (5)

which tumns into identity with respect of condition (4). Now, we will take into consideration
that the parameter R in Egs. (2) and (3), could have any value in the area 0 < R < oo, if the
behaviour of &(r) guarantees finiteness of the integrals on the right hand side of these equations,
the continuity of the function Y(y) up to y =R, and would satisfy condition (4). Then, Egs. (2)
and (3) could be taken in oblique

Y(y)= 2/ s(r)rdr 8(’”)=—%/wd§(yy)\/%’ 6)

because in the case R < oo it is assumed that &(r > R) = 0 and Y(y = R) = 0. However, for
us it is the essential fact that just Eq. (6) made possible the application of Abel’s inversion
in the case of gaseous discharges which have not exactly determined bordered surface, because
such discharges could not be determined by Eqgs. (2) and (3), in principle. One should have
in mind that the function &(r), beside the above mentioned conditions which are necessary
for the formal mathematical correctness of Eq. (6), has to satisfy one more condition which
is necessary because of physical reasons. Namely, the function &(r) has to decrease down to
the neglected level inside the area with radius (R.g), which is much smaller than the distance
between discharge symmetry axis and radiation detector.
Let us notice that Eq. (6) can be shown in oblique

® o(r) d(?) L[~ dr(y) do?)
Y(y)Z/yz =1 | oh (7)

if we replace the variables y and by y* and 72, taking into account relation dY/dy = dY/d(3?)-2y.
The oblique of these equations suggests that the functions Y(y) and &(r) are treated here as
functions of y? and r?, respectively. We will have in mind this fact, keeping the same denotation
for these functions. We will rewrite Eq. (7) in the form

Y5)=2 [Cend/m= ), a)=-2 [T T/, ®)

Let us remember that 2 — y? =x? and d(1/r? — y2)=dx. This, with regard to the structure of
Eq. (8), suggests that y* should be taken in oblique: y? =s2 + r2, where s is a new variable.
Accordingly, we can take d(1/y? —r?)=ds, later Eq. (8) obtains the following oblique

Y(y)= / e(r(x, y)) dx, )

dY(y(s,r))
e(r)= / (n) TN ds, (10)



Lj M. Ignjatovié, A.A. Mihajlov/Journal of Quantitative Spectroscopy & Radiative T ransfer 72 (2002) 677-689 681

if we take into account that d¥/d(y*)=dY/d(s?). Just the system of coupled Egs. (9) and (10)
is the base for our further considerations.

Now, we will call our attention to the fact that one of the solutions follows directly from the
form of this system, if one takes Y(y)=Y®(y), where YO(y)=COexp(—ny?) satisfies the
differential equation

1dY(y)
—EW—Y(J’)- (11)

At first, with respect to the relation y?=s% + r?, from Eq. (10) it follows that in this case
the corresponding local emissivity is obtained in oblique £©(r) = C@exp(—nr?). On the other
hand, with respect to relations e(r)=4¢"(r) and r?=x% + 32, from Eq. (9) it follows that
the corresponding radiation intensity is Y(y)=Y®(y). Accordingly, the functions ¥®(y) and
£©(r) exactly are one of the solutions of system (9) and (10).

The importance of this example is that it brings into consideration the Gaussian functions,
having in mind that the corresponding linear combinations of the functions exp(—ay?) and
exp(—or?), are also possible solutions of system (9) and (10). Here we keep in mind that the
linear combinations

N
Yv(y)=)_ ane ™, (12)
nzl
N 2
an(r)=_bue™", by=an |12, (13)
nzl1

where the parameters N and 7y, satisfy the conditions
1<N <o, 7,>0, opg1 >y, (14)

The functions Yy(y) will be used here for the approximation of the experimental radiation
intensity, as the linear combinations of the power degree functions are used during Abel’s
procedure with defined R. Accordingly, in our case the problem reduces to the determination
of the coefficients a,, the parameters y,, and the number of Gaussian functions N.

3. Method

From several investigated variants for the determination of the parameters y, we chose such
ones where 7, are defined by the relation

m=a+m—-1p n=12,.. N (15)

with « >0 and f > 0. In this manner the problem simplifies, because determination of N
parameters y, reduces now to the determination of only two parameters: o and f. In accordance
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with expressions (15), (12) and (13) the functions Yy(y) and ey(r) can be taken in oblique

N
Yv(y)=e™"Y ae P, (16)

n=1

N
8N(r): e—otrzz bne—('l—l)ﬂrz, bn =au\ / Ln_l)ﬂ’ (17)
n=1

which is convenient for further considerations.

The determination of the number of Gaussian functions (N), the coefficients a,, and the
parameters o and f is performed here with the help of a procedure which is based on the
minimization of the quantity

By p)=3 [Y00) ~ 7] {a} = {ar,an.....an}, (18)
k

where the summation is performed over all dots y= y;, wherein the experimental values of

the radiation intensity ¥{**” were determined. In the frame of this work it is assumed that
—-K <k <K, as well as that the experimental profile of the radiation intensity is symmetric
with respect to dot y=0. It means y_,= — y; and Yﬁe,;‘p)zY,Ee"p). Due to this, in further
considerations only the positive wing of this profile (y; > 0) figures.

First, used procedure assumes that N is being varied with the constant step AN =1 from
N =1 to N =Npax, while « and B are varied with the corresponding constant steps within the
intervals (omin, ¥max ) and (Pmin, Pmax )» Where dmin > 0 and S, > 0. Second, it is assumed that
for each concrete group of values N, o and f, the coefficients a, are determined by the method
of the least squares, i.e. from the condition

2
a(X{a}) _

1<n<N, 1
G0 =0 n<N, (19)

where Y(y) is given by (16).

Regarding the number of Gauss functions N we took the upper boundary Ny« ~ K. Deter-
mining the interval (min, ¥max) We had in mind that, in agreement with the above mentioned,
the function Yy(y) has to decrease rapidly with increasing of y. This condition is satisfied au-
tomatically because api, is taken very close to its approximative value ag, which is determined
from the wing of distribution Y,Se"p). Namely, it follows from Egs. (16) and (15) that Yy(y)
asymptotically approaches the function const-exp(—ay?). Supposing that the wing of the exper-
imental distribution Y**P), at least for k=K and k=K — 1 is falling into asymptotical region,

we can determine approximative value o= directly from the ratio Y\*P/¥(™). Later, it is
found that it is enough to vary a from amin = 0.900tp t0 otmax = 1.10, and f—from B, = 0.50¢
t0 Pmax ~ 20.

Secondly, the procedure presented assumes performing of selection of the functions Yy(y),
which are obtained in manner described above, because between them could appear one such
whose behaviour does not satisfy the criteria of physical reasons. Here the following criteria
were taken: (1) the functions Yy(y) and ey(r) have to be positively defined everywhere in
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the area y > 0 and r > 0, respectively; (2) the absence of the zeroes of derivations d¥y(y)/dy
and dey(r)/dr in the areas y > yx and r > yx, which provides monotonous decreasing of
the functions Yy(y) and &y(r) in these areas; (3) minimality of the deviation of these func-
tions with respect to the conditions of local monotony, which assumes that in each interval
(V&> Yi+2) the function Yy(y) changes exactly monotonous, if monotonous changing of the val-
ues Y,Se"p), Y,ﬁf{’ ), Y,Sixzp), and it has only one extremum in all other cases; (4) minimality of
the numbers of the extrema of functions Y(y) and &(r) in the areas 0 < y, r < yx.

The functions Yy(y), which satisfy just mentioned criteria, form the group of possible solu-
tions of the considered problem. In the frame of this work, as a final solution Y@)(y) is taken
as one such from this group, which corresponds to minimal square of the deviation (N, a, §).
The local emissivity, which corresponds to the function Y)(y), and whose determination is
our main task, is denoted here as &(i")(7).

4. Results and discussion

The described method was systematically tested on three groups of examples. The first group
consisted of examples wherein the local emissivity ¢(r) is a strictly decreasing function of 7, the

N=26 0=5.2 B=2.7

1 v 1 v A T ] ] I ! I
@ ® .
0.8" . 1.0- e s(exaC)(r) »
—&™(r)
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1 0.6 g
0.4- .
0.4 e
0.24 . 02
o Ye® “7 ]
— Y™y)
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-10 -05 00 05 10 0.0 0.5 1.0
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Fig. 3. The discharges with a strictly decreasing radial emissivity distribution (the case of small halfwidth).
Part (a): Y'**P—simulated measured intensity, obtained on the base of the local emissivity profile e®x*V(r),
Y8 (3 )—approximation of measured intensity by final linear combination of Gaussian functions. Part (b):
&**)(r)—started local emissivity profile, e"(r)—local emissivity determined on the base of Y(®)(y).
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Fig. 4. Same as Fig. 3, but in the case of middle halfwidth of radial emissivity distribution.

second group—examples wherein &(r) has a clearly expressed plateau, and the third—examples
wherein &(r) has the minimum in the centre. For each group the shape of the wing has been
varied. Besides, for the first group the halfwidth has been varied, for the second group—the
width of plateau, and for the third group—the depth and the width of the minimum.

Each example has been treated in the same manner. We started from nonanalytical profile
of the local emissivity, which is given in an array of discrete points, and normalized on unit
in r=0. Later, on the basis of this profile, we ‘constructed a continual profile £*a(r) with
help of the third order spline. Using expression in Eq. (9), with &(r) = £*)(r), we determined
the values of the simulated measured intensity in the dots y = y;, which played the role of the
values Y. On the so-generated data-set we applied the procedure described above. As a
result we have obtained the best approximation (in the above described sense) for the measured
intensity Y")(y), as well as the corresponding local emissivity ¢f)(r) which was, afterwards,
compared with the values &(®*2t)(r),

The results which are obtained are shown in Figs. 3—10. In the parts of these figures denoted
by (a), the values of the simulated radiative intensity Y{*" are shown by dots, while the full
curve shows Y(®)(y); in the parts denoted by (b), the profiles &(2)(r) are shown by dashed
line, while the full curve shows requested profile (i™(r). With regard to these figures, let us
note that y and r are given in arbitrary units wherein yx = 1.

Figs. 3-8 are related to above described three groups of profiles. All figures demonstrate very
good agreement of the found profiles ¢i®)(r) in comparison with &(*2)(r). The profiles ¢fi™(r)



Lj. M. Ignjatovi¢, A.A. Mihajlov!Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 677-689 685

N=9 o=4.2 B=2.1

16— :
4 . b
® 104 SRREY e I
14- - .
) ) —¢e(n
1.2" -1 08_
1.0- 1
' 1 06-
0.8- -
0.6 41 o044
0.4- -
: 1 02
0.2- T -
4 fi 4
— Y™y)
0.0+l N 00
40 05 00 05 10 0.0
y r

Fig. 5. Same as Fig. 3, but in the case of large halfwidth of radial emissivity distribution.
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Fig. 6. The discharges with clearly expressed plateau on radial emissivity distribution (the case of narrow plateau).
Rest as Fig. 3.
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Fig. 7. Same as Fig. 6, but in the case of wide plateau. Rest as Fig. 3.

correspond to the found final values of N, «, and f which are given on these figures. Due
to space economizing, only the last example (shown in Fig. 8) is presented together with the
corresponding table which makes possible the quantitative analysis. Substituting the necessary
data

N=10, a=52, B=43,

a1 =27.18, ar = —237.04, az =1290.54, as = —4477.85,
as=10316.96, as=—16081.71, a;=16788.71, ag= —11236.35,
ay=4352.47, ajo=-—741.06

into Eqs. (16), (17), we obtain the functions Y™ (y) and &fi™(r) whose values are compared
with YP) and e(*at)() in Table 1.

In order to test the applicability of described method when the profile of the local emissivity
is more complicated, we used the data about the radial profile of the density n(r) for one kind
of atoms in the gaseous discharges from [3]. Concretely, we took &(*2Y)(r)=const - n(r), and
applied our method. The result is shown in Fig. 9. As one can see an excellent agreement
between &) (r) and g(*at)(r) exists.

At last, in order to test the applicability of our method in the cases which permit to introduce
the discharge radius R, we considered examples from [2]. The data for the local emissivity and
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Fig. 8. The discharges with clearly expressed minimum in the centre of radial emissivity distribution. Rest as Fig. 3.
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Fig. 9. The discharges with more complicated oblique of radial emissivity distribution. Rest as Fig. 3.
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Fig. 10. Application of described method to the case of discharge with defined radius (R). Values Y®*®) are taken
from [2], while rest is same as Fig. 3.

Table 1

Quantitative comparison between starting and final values of radial emissivity distribution. Same example is shown
in Fig. 8

R Y(exp) Y(ﬁn) 8(exact) 8(fm)
0.0 1.8522 1.8500 1.0000 0.9905
0.1 1.8463 1.8456 1.0124 1.0088
0.2 1.8311 1.8322 1.0469 1.0471
0.3 1.8016 1.8024 1.1554 1.1587
04 1.6959 1.6956 1.2924 1.2891
0.5 1.4515 1.4519 1.2117 1.2111
0.6 1.1569 1.1574 0.9851 0.9867
0.7 0.8816 0.8814 0.8184 0.8174
0.8 0.5853 0.5847 0.6234 0.6204
0.9 0.3098 0.3111 0.3626 0.3641
1.0 0.1304 0.1334 0.1554 0.1647
1.1 0.0480 0.0610 0.0607
1.2 0.0149 0.0218 0.0191

the radiative intensity were taken as a base, but without the last dots which correspond to the
zeroth values of these quantities. The most complicated example, which is characterized by deep
minimum in the centre, is shown in Fig. 10.
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On the basis of the shown results, it is clear that the presented method can be successfully
applied for the diagnostics of the free burning discharges with the most different distributions
of the local emissivity. One of its positive features is that Y(i")(y) and £fi")(r) are obtained in
the simple analytical form. Another such feature is the exponential decreasing of the functions
Y(y) and ¢fi™)(r) in the wing areas, which enables that in a usual manner, would deter-
mine the effective radius of the free burning discharge R.y. Finally, the method permits the
programming realization which made possible its operative laboratorial usage.

Further development of the method assumes that the number of factors which were not
treated here (for example, finite precision of the experimental data, ordinate of symmetry axis
of discharge, etc.) has to be taken into consideration. However, everything that was mentioned
becomes important after the wide testing of the presented method in the laboratorial practice.
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