J. Phyg. D: Appl. Phys. 26 (1993) 1041-1047. Printed in the UK

3

Static electrical conductivity in weak
and moderately non-ideal plasmas

A A Mihajlovt, A M Ermolaevi, Z Djuri¢t and Lj Ignjatoviét

T Institute of Physics, PO Box 57, 11001 Belgrade, Yugoslavia

¥ Department of Physics, University of Durham, South Road, Durham DH1 3LE,

UK
Received 30 July 1992, in final form 1 February 1993

Abstract. We present a discussion of semiclassical and quantum mechanical RPA
treatments of static electrical conductivity in non-ideal plasmas. It is found that the
results obtained from both theories agree well with each other in the range of
temperatures from 5000 to 50000 K for electron concentrations between 10'® and
10% cm~3. The reported results present a significant improvement on the
predictions of the Spitzer formula. Good agreement is also found with available
experimental data on non-ideal plasmas. An analytical formula for static

conductivity convenient for applications is introduced.

1. Introduction

The static electrical conductivity o of fully ionized
plasma can be expressed in terms of the relaxation time
7e(E) in a general integral form as follows:

o0
4e? dw
0

where p(E) is the density of one-electron states in
the energy space, w( E) is the equilibrium distribution
function, m, e are the mass and the absolute value
of charge of the electron. The relaxation time can be
defined via the effective frequency v.(E) of electron
scattering in plasma, thus

e(E) = v7'(E). (2)

Equation (1) is usually derived from the moments of the
classical Boltzman equation if scattering of electrons on
heavy particles is included in consideration but electron—
electron scattering is not (see for instance Shkarofsky et
al (1966)). A special correction is then to be made to
account for the neglected electron—electron interaction.
Equations (1) and (2) can be taken as a starting point for
both quantum-mechanical and semiclassical treatments
of the static conductivity in plasmas.

A quantum-mechanical theory for o has been pre-
sented by Adamyan ef a/ (1980) and more recently by
Djuri€ et al (1991) where frequency of electon scattering
ve( E) was calculated in the first Born approximation
using Green’s function formalism in the random phase
approximation (RPA). The treatment in these works was
complete in the sense that both electron—electron and
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electron—ion interactions were included in the RPA cal-
culation of the quantum-mechanical o®PA using an ex-
pansion in terms of polarization operators II,, with the
v-summation over the Matsubara frequencies.

The aim of the present paper is to formulate a corre-
sponding semiclassical (SC) theory for static conductivity
and compare it with the quantum-mechanical calcula-
tions for electron transport in plasmas. In the course of
this work, we shall show how the Spitzer theory (Spitzer
and Harm 1953, Spitzer 1962) can be obtained from the
present model after some simplifications and a special
choice of the parameter xy below.

The plasma is usually referred to as being ideal if
the mean interaction energy of particles is much smaller
than their kinetic energy (Anders 1990). The real plas-
mas where the interaction energy of particles is still sig-
nificantly smaller than kinetic energy and those where
both energies are comparable in magnitude are said to
be weakly non-ideal and non-ideal, respectively. Non-
ideality can be characterized by the non-ideality param-
eter I,

I = Bel(4n N./3)/3 (3)

where 8 = (kT)~!, N, and T are free-electron density
and plasma temperature. In accordance with the above
definitions, I' <« 1 for ideal plasmas and I' — 1 for
non-ideal plasmas.

It is well known that the Spitzer theory gives a good
account of static conductivity for highly ionized non-
degenerate weakly non-ideal plasmas. However it was
noted by several authors (Giinther et a/ 1976, Giinther
and Radtke 1984, Kurilenkov and Valuev 1984) that the
Spitzer formula overestimates systematically the exper-
imental conductivity of non-ideal plasmas. It is partic-
ularly true for singly ionized plasmas with an increased
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. non-ideality I'. For instance, a significant difference be-
tween the value predicted by the Spitzer theory and the
experimental data for quasi-stationary dense plasmas
(Ne = 108 cm~3 at T ~ 10* K) produced in noble-gas-
filled flashlamps, has been recently reported by Vitel et
al (1990).

The thermodynamical domain considered in the
present work is wider than that assumed in the original
Spitzer theory. Consequently, the results reported be-
low are expected to be valid for an important class of
non-ideal plasmas. As we shall see, an additional ad-
vantage of the present approach is that it gives results
close to the quantum-mechanical calculation in a wide
range of plasma conditions. This has also a practical im-
plication because the quantum-mechanical treatment is
computationally much more demanding than the semi-
classical theory presented here.

2. Semi-classical theory

We shall discuss the case of a two-component quasi-
neutral plasma that consists of free electrons and posi-
tive jons of charge Ze. We shall take w in equation (1)
to be the Fermi-Dirac distribution function,

w(E, uoe) = 1/(e°F4e) 4 1) (4a)

where pg. is a parameter determined by the normaliza-
tion condition thus:

[ wBumnmraE =N, (@)
with 32
p(E) = V2 T g2 (40)

The parameter pg. in equations (4) is determined
in a way similar to that of the RPA theory. Namely,
we shall take pug. to be the chemical potential of an
ideal electron gas with the same N, and T as those
in the observed plasma. The ionic component is con-
sidered as a homogeneous positive background which
ensures the electrical neutrality of the whole system.
If the ijonic background is not homogeneous then ef-
fects due to the local structure arise. Earlier Vorob’ev
and Khomkin (1977) considered the formation of ionic—
atomic clusters in the plasma which may affect the shape
of the density function p( E). However, these effects
are beyond the scope of the present paper since our
aim is to establish correspondence between the Spitzer
theory and a CS theory based on the RPA, that is be-
tween the theories where cluster formation has been
neglected. The neglect of these clusters is justified be-
cause their contribution in the case of the observed
systems (highly ionized and equilibrium gas plasmas) is
very small (Khomkin, private communication).

In the RPA approach, v in equation (2) is the ef-
fective frequency of the momentum change of a free
electron scattered by fluctuations of the internal plasma
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field that is on ions and electrons. The analogous quan-
tity in the semiclassical theory takes the form

v°(E) = NivQE(v) + §Ne(lv - v'|QE(Jv - v’l))s

where N; = N./Z is ion density, v = |v| = (2E/m)/?
is the electron velocity in the laboratory frame, and
QY and QY are transport cross sections for electron—
ion and electron-electron collisions, respectively. The
bracketed term gives the electron—electron cross section
averaged over the electron velocity v’ for a given dis-
tribution in the plasma. The coefficient } in the second
term of equation (5) corrects for the double counting
of colliding electrons in the gas.

Regarding equation (5), we note that it describes a
model of electron scattering in plasma that is closest to
the model used in the RPA method. We have justified the
use of (5) in equations (1) and (2) by direct comparison
of the calculated results with those obtained from the
RPA method.

Equation (5) can be written in a convenient form
introducing the electron scattering factor xee thus:

Ve = Xee NivQE(v) (6a)
where
— 14 Z{(v—v'Qa(lv =)

so that xe = 1 if the electron-electron scattering is
neglected. .

The transport cross sections Q% and QX are calcu-
lated in the Rutherford approximation with the cut-off
impact parameter, thus

62 2
Q:..:( Z )ln[1+(re.me.v2./z.e2)’1 (7a)

Mea vga

where a =i or ¢ (i and e corresponding to the ion and
electron, respectively), Z, = Z or 1, v, is the relative
velocities of a and e and m,. is the corresponding
reduced mass. We take v = v, vee = |v — 9’| in
agreement with (5), m; = m, and define me. according
to

mz m

““Tm+mn_ 29

where 7 is the effective electron mass parameter. The
value 7 = 1 corresponds to the binary electron—electron
collisions on a positive background and n = 1 corre-
sponds to a model where the velocity of one electron
remains unchanged, that is to the RPA theory. The
cut-off radii re and ry will be specified below. Then
using equations (2), (5) and (6) we obtain the following
expression for the semiclassical relaxation time:

m

(7b)

1 (2m)V2E3/2 1
SC — SC _
Te (E)—I/Ve (E) - Xee 2€4ZN3 ln[1+ A?]I/Z

®




‘where

26E Zr,

e Z)= 9
2(Z) r(2) = (9)
and rp = fBe? is the Landau length.

With the help of (4) and (6) we obtain the following
expression for xee in equation (8) thus:

xe=t+ 2 (Y (my [ [l

—-00 0
v’ In[1 4 A2]Y/2
[v.L + (.v _ v")2]3/2 m[l + A2]1/2

A=

vy va_ dv"

(109)
where

E' = m(vi+v]) Ae= Bmee[vi+(v—v))?]|(ree/ L)
(11)

with v, and v, being the normal and parallel com-
ponents of v’ referring to v.

When equation (8) is introduced in (1) and the mean
value of the factor 1/xee is obtained from the integral,
the semnclassml expression for static conductivity in the
plasma, o, takes the following form:

¢ — Yee AF (e, Brice) Yee = (I/Xee)- (12)

In equation (12),

(8/B)*?

= (mm)V2Ze? (13)

and

T o2 exp(e = Do)z, Buon)
Flp.fuo = B [ * "‘.T,m‘k"%?f,ifpfi"“ :

(14)
where we have introduced « = BE. Coefficient B in
equation (14) may be expressed in terms of the classical
chemical potential. Namely,

1 (m/By? _ 1
B =g arnmN, = §™P(- Bude) (15)
where . is the classical limit of the chemical potential
Hoe, that is

uh = 5In (Ver RN (m/B)7) . (16)

In the present work, the chemical potential uge was
obtained numerically, for given N, and 7, from equa-
tions (3)-(4). Table 1 presents pq. and ul in the range
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Table 1. The dependence of the parameter Bitoe,
equations (4) and its classical limit gu3,, equation (16),
the upper and lower rows, correspondlngly on plasma
temperature T and electron density N,. 8 = (kT)~" and
Boe IS chemical potential of the electron component of the
plasma.

No(10™ cm™—3)
TP K 1 5 10 50 100
3 2027 0242 0669 3903 6416

2071 0462 0.231 1.841 2534

5 2818 1126 0330 2071 3.693
2838 1228 0535 1074 1768

10 3871 2232 1502 0395 1.440
3877 2268 1575 0.035 0728

20 4915 3295 2589 0877 0.056
4917 3308 2615 1.0056 0.312

30 5524 3909 3209 1544 0.781
5525 3916 3223 1613 0920

40 5956 4343 3646 2000 1.261
5957 4347 3654 2045 1352

50 6.291 4679 3983 2347 1.622
6292 4682 3989 2380 1.686

of temperatures T from 3000 to 50000 K, and in the
range of concentrations N, from 102 to 1022 cm—3.

The factorized form (12) of the static conductivity is
convenient for comparison with the RPA theory as well
as with the theory of Spitzer. We note that both oRFA
and og, converge to the limit for the ideal plasma when
the non-ideality parameter I' — 0.

We shall now specify the choice of the cut-off ra-
dius 7, a = € or i, in the semiclassical theory. Note
that in the RPA theory we deal with the characteris-
tic lengths for a gas constituted of particles of charge
Z,e(a=¢, iy |Z| = 1, Z; = Z) with the correspond-
ing compensating background. Therefore we shall take

2,2 \~12
ra = [ A7Zie”_ (17)
Opum/ON,

where ug, is either electronic (a = €) or ionic (a = i)
chemical potential and the derivatives are taken at T =
constant. For a = e, we have from equations (4) that

3 1 1 00 -1
87\;: = ﬁNe<1—- ,33/2Ne/0 wz(xs ﬂl»‘()e)P(z)dx) .
(18)

The ions are treated here as classical particles, for a = i
we thus have

Oug _ 1 _ Z
oN, = BN ~ BN, (19)
From equations (17) and (19) we obtain
re = rh = (4n Ze*BN, Y-z, (20)
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Equations (19) and (20) directly correspond to a
classical gas. It is easy to show that (18) also converges
to the correct classical limit. Note that in the classical
limit, poe < 0 and = + Bluge| > 1, so that (18) is
reduced to

(Bpioe/ONe)g = (BNe)™! (21)

and
Tee = 1 = (4me?BN.) 2. ()
In equations (20) and (22) the characteristic lengths rf,
and rf, are formally equivalent to the Debye radii for an
ion and an electron gas with the corresponding compen-
sating homogeneous background at given temperature

We have used equation (18) to tabulate the deriva-
tive numerically and then obtain re from equation (17).

The final expression for the semiclassical static con-
ductivity oC is obtained from equation (12) if the func-
tion F(p,Buoe), given in the general case by equa-
tion (14), is replaced by its classical limit Fy(p) as
follows:

1 i _z dz
FO(P) = 6-\0/33364 ln[1+ (2x/p)2]1/2
1
= [l + zo/p) V2 @)

where p is determined by equations (9) and (20) via
the chemical potential ., and xyp = zo(p) is some
‘average’ value of z. The expression for o%C is then
given by

SC - AYee
o= 'YeeAFU(p) - ln[l + (2330/?)2]1/2 (24)
where the coefficient A is given by equation (13).

As a result of the transition from F to Fy, o°C in
equation (24) becomes a function of one argument, p,
o:gcy. This simplifies greatly the comparison between
o> and Spitzer’s conductivity os,. The latter is given
by a well-known expression (Spitzer 1962), that is

osp = Avsp/In(3rp/Z L) (25)
where coefficient A is determined, as in equation (24),
by equation (13).

We checked that the transition F' — F; was justified
by direct calculations of zy from equation (23) within
the entire range of T and N, covered in table 1. We
found that the replacement of Fj on the left-hand side
of equation (23) by the original function F(p, Buce)
results in very small changes in z9. Within the range
Buoe < —1 in table 1 and outside it with greater T
and/or smaller N, these changes were less than 1%,

After introducing function Fj, the comparison be-
tween o5 and os, is reduced to a comparison of the
electron scattering factors -ee and s, and of the argu-
ments of the corresponding logarithms, in a region of
weak and ideal plasmas, ' — 1.

Let us start with the electron scattering factor ~e.
in equation (24). Numerical calculations have shown
that for each given N, and Z, <. has the following
properties as a function of temperature
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Table 2 Coefficient vee = (xa') determined by
equations (6) and (10) as a function of plasma
temperature T, for the case of electron density
No=10" cm=2 and Z =1, 2 and 4.

Z

T(10° K) 1 2 4

10 0.630 0.697 0.687
20 0.604 0.697 0.754
30 0.590 0.694 0.766
40 0.582 0.691 0.771
50 0.576 0.689 0.774
60 0.572 0.688 0.776
70 0.569 0.687 0777
80 0.567 0.686 0.778
90 0.565 0.686 0.779
100 0.563 0.685 0.780
60 (2) 0.582 0.683 0.785

(i) Its values always lie in a narrow interval.

(i) It has a maximum in a low temperature domain
outside the range of table 1.

(iii) It decreases monotonically with temperature in
such a way that v, = vsp for some value of T within
the range of table 1.

The changes in vee within the full domain of T have
been found rather small, less than 10% of Spitzer’s value
vsp. This is demonstrated in table 2 where values of both
factors are compared at T > 10* Kand N, = 10'8 cm-3
for Z =1, 2 and 4. The values of v, given in table 2
have been computed with the effective mass parameter
n = 1 in equation (7b). It has been found that, with
this choice of # (corresponding to the RPA method), the
best agreement between o5C and o, is achieved. This
choice of n ensures also a minimum departure of ~e.
from ~s,. Correspondingly, we shall use

Yee = Y5p(Z)- (26)

Now we shall turn to the logarithmic term in the
right-hand side of equation (23). Let us consider the
case of I' < 1. Then the unit in the log argument can
be neglected in comparison with the second term there. -
We can expand the resulting expression as follows:

_ 1 _ In(2zy)
Fo(l’)— W(l‘Q+Q2—...) Q= ln(l/;)
(27)

It follows from (27) that the asymptotic value of Fy
as I' — 0, does not depend on a particular numeri-
cal choice of xy. For non-ideal plasmas, however, the
choice of x¢ does affect the value of Fj.

We note that the Spitzer logarithm in equation (25)
is obtained from (27) if we take E as being the mean
thermal value, E = 3kT, that is zp = . This value
may not be the best choice for the ‘average’ = because,
as can easily be seen, the integrand in equation (23)
peaks at = = 3 rather than at = 3. A more consistent
way of dealing with this integral is to evaluate it exactly,
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Figure 1. The function f(p), equation (28). Upper curve:
f(p) for p < 1, lower curve: f(p) forp > 1 given as a
function of 1/p. Special values of f(p): f(0) = 2.3412,
f(1) = 1.9365 and f(c0) = 1.6330.

for given p, and replace the p-independent xg by a p-
dependent parameter, according to

p=Z% ()

=3

zp = ;f(l’)

For f = 1, zp = 3 in accordance with the Spitzer
convention. Therefore the function f(p) characterizes
the departure of zo(p), for a given value of p, from
Spitzer’s choice of xy. The parameter p used in the
present paper (sce¢ also equation (9)) coincides with
the parameter for a non-ideal plasma which is often
denoted in the literature as ~.

The function f(p) in (28) has been computed
in the entire range 0 < p < oo in our previous
paper (Mihajlov e al 1991). We have tabulated
f(p) and displayed results in figure 1. For small
p, this function is given by the following for p =
0, 10-5, 10-4, 10-3, 102, 10~! we have, respectively,
f(p) = 2.341, 2.291, 2.281, 2.264, 2.236, 2.172.

In the range 0.1 <p <1, f(p) is accurately repre-
sented by a simple linear function:

f(p) = 2.198 — 0.262p. (29)

As figure 1 shows, f(p) is close to 2 over a wide range
of p and never reaches 1. In other words, the ‘average’
value of z in integral (23) is indeed much closer to 3
(where the integrand attains a maximum) rather than
to Spitzer’s value of 1.5.

Using equation (26) for 4. and the definition of
xg given by equation (28), we obtain the following final
expression for o5C:

sc _ 8(2kT)¥? vsp(Z)
7T ) Z [l + (2z0/p)2) 2

(30)

where zy = zo(p), p is given by equation (28) and ry
is given by (20). Equation (30) ensures automatically
the asymptotic equivalence (when I' — 0) of the semi-
classical conductivity o5C and Spitzer’s conductivity os,.

Conductivity of fully ionized plasmas

This is an important result considering that o must
play the role of a classical analogue of o®PA which, in
turn, has been shown to be asymptotically equivalent to
asp (Djuri€ et al 1991). The coefficient vs;( Z) in equa-
tion (30) was tabulated by Spitzer (1962) for selected
values of charge Z. Its values for Z = 1, 2 and 4 are
given in table 2. Therefore, equation (30) determines
completely our semiclassical model of conductivity.

3. Comparison with the quantum mechanical
theory

The quantum mechanical and semiclassical conductiv-
ities, oR" and oC, respectively, were compared for
the particular case of a hydrogen-like plasma with Z
= 1. For the quantum-mechanical model, the effective
frequency ve( E) = vRPA(E) in equations (1) and (2)
was obtained using the following algorithm:

2 9(E)
RPA _e mNekT/ &(q)—1
VIE) =GR fy 1ML g

v

(8m E)1/2

a(B) = = (3

4re?

fy(q) = 1 + qz

> ZM,,(q)

where ¢ is the momentum of the electron, €,(q) is
the static dielectric function, II,,(q) is the polariza-
tion operator of species of sort a, and v-summation is
over the Matsubara frequencies. Functions ¢,(q) and
I1,,(q) are defined in Djuri€ et al (1991). The results
are found to be dependent on the slow convergence of
the Matsubara series in v in equation (31). Even for
weakly non-ideal non-degenerate plasmas (N, = 108
and T = 5 x 10* K) some 100 terms in the series (31)
are required to ensure computational accuracy at a level
of 1%. The calculations become even more protracted
in the case of a many-component plasma. Therefore
the semiclassical model developed in the present paper
is a practically useful alternative since it requires only
limited computational effort.

The semiclassical conductivity o5C was computed
from equations (28)-(30) with s, taken to be 0.582
(for Z = 1).

A comparison of the two sets of static conductivities
is presented in figure 2 where the conductivity curves
are shown in the temperature range between 5x 10° and
5 x 10* K for electron densities N, = 10, n = 18, 19
and 20.

It is easy to see that, for high temperatures when the
non-ideality of plasmas decreases, all curves for given
N, and T converge to the same asymptotic limit. How-
ever, as T decreases and the parameter of non-ideality
I becomes larger, the curves diverge from each other.
The deviation becomes most apparent at temperatures
T <2x10* K For T > 10* K, the semiclassical model
gives results that are very close to those from the RPA
calculation.
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Figure 2. Comparison of + and «™* in a selected
domain of T and N,.
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Figure 3. Comparison of theoretical and experimental
values of oea = a(Ays,)~". Theory: S, dotted curve,
Spitzer theory; V, broken curve, madification of Vitel et a/
(1990); P, full curve, present theory for the Debye cut-off
parameter, gc = 1. Also shown: P, broken curve, present
theory for a non-Debye cut-off parameter, with q. # 1
determined in section 4. Experiment: (¢) vanov et a/
(1976); (a) Ganther and Radtke (1984); (O) Vitel et a/
(1990); and © Benage et a/ (1990).

4. Discussion

In figure 3 we compare the available experimental data
on the static electrical conductivity of the singly ionized
(hydrogen-like) plasmas with the theoretical curves for
Z = 1 drawn in the reduced form, ¢3¢ = 1/In[1 +
(3f(p)/p)?|V/? determined by equations (28)-(30). It
is seen that the experimental points lie closer to o35
rather than to the corresponding theoretical curves of
Spitzer (1962) and Vitel et al (1990).

Vitel et al (1990) found that the line profiles ob-
tained in their work indicated that the plasma became
less collisional when non-ideality increased. At the same
time they observed, as the present figure 3 shows, that
the measured static electrical conductivity was signif-
icantly lower than that according to Spitzer’s theory.
In order to resolve this contradiction they suggested
that there was an additional scattering by the oscil-
lating microfields in such dense plasmas which led to
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the reduced conductivity. It is a matter of interest to
point out that this additional mechanism in non-ideal
plasmas is expected to be more pronounced in regions
where the gradients of temperature and density are high
(Kurilenkov and Valuev 1984). However, this condition
was not satisfied in the experiments of Vitel er al (1990),
who carried out the determination of the current in the
axial region where the gradients were small. The present
work suggests that there is indeed no compelling reason
for assuming strong effects of such additional scattering
in the experimentally tested conditions.

Another way of accounting for the non-ideality of
plasmas would be to consider quantum scattering at
the cut-off Coulomb or Debye potentials, both depend-
ing on a cut-off parameter r. (Giinther and Radtke
1984). However, in the range of experimental con-
ditions treated in the present paper, transport cross
sections and, therefore, static conductivity depend very
little on the particular model of the scattering centre.

Finally, we shall discuss one particular modification
of the presented sC theory. It was earlier suggested
by Giinther er al (1976) that, for non-ideal dense plas-
mas, the cut-off parameter ry should be different from
the Debye radius rf, given by equation (20). This re-
quirement may be taken into account by replacing ry
in equation (30) by g.r}, where the scaling parameter
gc depends on the number of particles, np, inside the
Debye sphere (that is inside a sphere of radius rf).
For instance, the model considered by Kaklyugin and
Norman (1973) gives, for Z = 1,

1 2Innp
Qc—1+E+§ o

np 2>1. (32)

Equations (28) and (30) above may be considered
as a particular case (gc = 1) of the scaled theory. We
note that the modified value of the cut-off parameter,
for which p in equation (28) has to be replaced by p/qc,
changes slightly the relation between the experimental
conditions (N and T') and the numerical value of the
parameter. As figure 3 shows, the rescaled curve P, for
o5;(p) gives an even better fit to the experiment than
the curve P does for the Debye cut-off (¢.=1).

The present theory can be readily extended, in a
simple form, to the general case of many-component
plasmas by introducing the effective ionic charge Z to
replace Z, thus:

Z=N;'Y"2Z°Nz  N.=)ZN; (3)
where summation is carried out over all sorts of ions in
the plasma.
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