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Abstract
This paper presents the results of semi-classical calculations of rate coefficients
of (n − n′)-mixing processes in collisions of Rydberg atoms H∗(n) with H(1s)
atoms. These processes have been modelled by the mechanism of the resonant
energy exchange within the electron component of the H∗(n) + H collisional
system. The calculations of the rate coefficients, based on this model, were
performed for the series of principal quantum numbers, n and n′, and atomic,
Ta, and electronic, Te, temperatures. It was shown that these processes can
be of significant influence on the populations of Rydberg atoms in weakly
ionized plasmas (ionization degree �10−4), and therefore have to be included
in appropriate models of such plasmas.

1. Introduction

This paper presents a further necessary investigation of two groups of inelastic collisional
processes H∗(n) + H and �ek + H+ + H, where H = H(1s), H∗(n) is a hydrogen atom in a
Rydberg state with the principal quantum number n, and �ek is a free electron with energy εk .

The first group of processes is (n − n′)-mixing, both excitation:

H∗(n) + H →
{

H∗(n′ = n + p) + H,

H + H∗(n′ = n + p),
(1)

and de-excitation:

H∗(n) + H →
{

H∗(n′ = n − p) + H,

H + H∗(n′ = n − p),
(2)

where p � 1.
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A second group of processes consists of chemi-ionization:

H + H∗(n) → �ek +

{
H+ + H,

H + H+,
(3)

and chemi-recombination processes:

�ek + H+ + H →
{

H + H∗(n),

H∗(n) + H.
(4)

Note that the resonant energy exchange within the electronic component of the collisional
system was considered to be the main mechanism in these processes. It is different from
the inelastic processes in H∗(n) + M and �ek + H+ + H collisions, caused by direct interactions
between the outer electron and atom or molecule M, whose electronic state remains unchanged
during collisions (see [1–3]).

Processes (3) and (4) were extensively investigated. In [4], a semi-classical theory of
the process (3) was formulated, and later in [5, 6] the method was developed to calculate
the rate coefficients of (3) and (4). The method was finalized in [7, 8], where the rate
coefficients were calculated for the equilibrium (Te = Ta) and non-equilibrium (Te > Ta)

hydrogen plasmas, in wide domains of n, Ta and Te. In [9], the rate coefficients of (3) and
(4) were calculated for the Sun’s photosphere. Results in [8, 9] showed that for weakly
ionized hydrogen plasmas (ionization degree ∼10−4), these processes should be the dominant
mechanisms for the population of Rydberg atoms, in comparison with other ionization and
recombination processes. This was confirmed in [10], by calculations with the programme
PHOENIX for modelling stars’ atmospheres.

The total population of Rydberg atoms in weakly ionized hydrogen plasmas, as well
as their distribution with respect to quantum numbers, is important for plasmas’ kinetics.
Therefore, apart from chemi-ionization and chemi-recombination processes, the processes of
(n − n′)-mixing must be taken into account. In [11, 12] it was found that the cross-sections
for processes (1) and (2) were of an order of magnitude higher than that of the corresponding
gas-kinetic processes. It suggested that apart from (3) and (4), processes (1) and (2) must
be included for a full analysis of inelastic Rydberg atom–atom collisions and their influence
on the Rydberg atom populations in weakly ionized hydrogen plasmas. This is illustrated in
figure 1, where dashed arrows show links between Rydberg states and the continuum caused
by (3) and (4), and bold arrows show links between Rydberg states themselves caused by
processes (1) and (2).

The analysis of (n − n′)-mixing processes is based on calculations of rate coefficients
as functions of n, n′ and atomic temperature Ta. We developed a semi-classical method for
the rate coefficients of processes (1) and (2) within the Rydberg domain of principal quantum
numbers (n � 1). The method was applied for a series of n, p, Ta and Te, in domains of their
values typical for a weakly ionized hydrogen plasma, similar to those in [7, 8]. The results
allowed us to compare (1) and (2) with the corresponding inelastic electron–atom collisional
processes.

2. A resonant mechanism of inelastic processes

In experiments [13], a high efficiency of (n − n′)-mixing in symmetrical atom–Rydberg atom
scattering in weakly ionized gas plasmas has been established. The theoretical explanation
in [11] introduced the mechanism of the resonant energy exchange within the electronic
component of the given collisional system, satisfying the constraint:

R � rn, (5)
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Figure 1. A diagram showing the resonant mechanism in chemi-ionization/recombination
channels (dashed arrows), and (n − n′)-mixing channels (full arrows).
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Figure 2. A diagram showing H∗(n) + H(1s) collisions in the system of the mass centre; ein and
eout are the inner and outer electron, respectively. The shaded area marks the internuclear distances
satisfying constraint (5).

where rn ∼ n2 is the average radius of the Rydberg atom in the state with a principal quantum
number n, and R is the internuclear distance. This mechanism has been described in detail in
[12, 4], and its main points will be summarized here.

Under condition (5), processes (1) and (2) were modelled as the interaction between a
non-Coulomb part of the H∗(n) atom’s outer electron potential and a subsystem H+ + H (see
figure 2). The electronic Hamiltonian H of the system was written as:

H = Hmi(R) + He + Vd, (6)

where Hmi(R) is a Hamiltonian of the subsystem H+ + H, He describes an outer weakly bound
electron in a Coulomb field and Vd is the non-Coulomb potential. Because only slow collisions
were considered, the electronic state of the subsystem H+ + H was described as a superposition
of the ground |1, R〉 and first excited |2, R〉 adiabatic electronic states of the molecular ion
H+

2. These states satisfy the Schrödinger equation:

Hmi(R)|i, R〉 = Ui(R)|i, R〉, i = 1, 2, (7)
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where U1,2(R) are corresponding adiabatic terms. These terms as functions of R are shown in
figure 1, in accordance with [14]. The delocalization of the electrons of the system is shown
in figure 2. The state of an outer electron |n〉 satisfies the equation:

He|n〉 = εn|n〉, (8)

where εn = −Ry/n2. In the dipole approximation the operator Vd is expressed as:

Vd = e�r · �d
r3

(9)

where �r is the radius vector of the outer electron, e is its charge, r = |�r| and �d is the dipole
momentum operator of the subsystem H+ + H.

In [11], the relative movement of nuclei in the collisional subsystem H+ + H was
approximated by straight trajectories, and the influence of an outer electron on the electronic
state of the system was neglected. Under these assumptions, the system was characterized
by the dipole momentum �d12(t) as a known oscillating function of time t and frequency
ω12(R(t)) = [U2(R(t)) − U1(R(t))]/h̄. The probabilities of n → n′ 	= n transitions were
calculated from the solutions of a non-stationary Schrödinger equation with Hamiltonian
He + [e�r · �d12(t)]/r3. The probabilities were used to estimate the cross-sections for processes
(1) and (2), and for n ≈ 10.

This approximation had previously shown a resonant characteristic of the considered
processes. For every n → n′ transition, the dominant role was played by surroundings of two
resonant points R = Rn;n′ , where Rn;n′ is determined from

U2(Rn;n′) − U1(Rn;n′) = |εn′ − εn|. (10)

In resonant points the transition frequency is |εn′ − εn|/h̄ = ω(Rn;n′).
Note that the same mechanism was applied in [15] for rate coefficient calculations of

some chemi-ionization processes similar to (3), but in A∗(n)+A collisions in the case of alkali
metals. The same approach for such chemi-ionization processes was used in [16, 17].

The next step in a theoretical approach to the inelastic processes in symmetrical atom–
Rydberg atom collisions was presented in [12]. The model was improved to include the
influence of the electronic state of the outer electron on the electronic state of the subsystem
atom–core of the Rydberg atom. The electronic state of the whole system was described as a
superposition of the states |1, R; n′〉 = |1, R〉|n′〉 and |2, R; n′〉 = |2, R〉|n′〉. In accordance
with (7) and (8), these states satisfy the equations:

[Hmi(R) + He]|i, R; n′〉 = Ui;n′ |i, R; n′〉, (11)

where

Ui;n′ = Ui(R) + εn′ , (12)

and i = 1, 2. In [4, 12] it was explained why the electron spin has been neglected. The
probabilities for n → n′ 	= n transitions were calculated from the non-stationary solutions of
a Schrödinger equation with a Hamiltonian given by (6) and (9), and the corresponding initial
condition at n′ = n. The probabilities were used to calculate the cross-sections of processes
(1) and (2), for a series of initial and final quantum numbers n and n′.

This model explained some characteristics of processes (1) and (2), which was of
importance for further analysis. It was confirmed that these processes were strongly resonant.
This means that the excitation and de-excitation processes (1) and (2) are exclusively linked to
transitions |2, R; n〉 → |1, R; n′ = n + p〉 and |1, R; n〉 → |2, R; n′ = n − p〉, respectively.
Both transitions take place in the vicinity of resonant points R = Rn;n′ , which can be interpreted
as points of intersection of terms U2;n and U1;n′ for n′ > n, or U1;n and U2;n′ for n′ < n.
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Table 1. Rn;n+p/a0 values calculated from (10) for n′ = n + p.

p

n 1 2 3 4 5

4 6.776 6.252 6.016 5.883 5.799
5 7.497 6.941 6.680 6.528 6.430
6 8.084 7.504 7.224 7.056 6.946
7 8.580 7.981 7.685 7.505 7.384
8 9.008 8.394 8.086 7.895 7.766
9 9.386 8.760 8.441 8.241 8.104

10 9.724 9.088 8.760 8.553 8.409

In other words, the mechanism of processes (1) is a resonant energy exchange within the
electronic component of the collisional system H∗(n) + H (see figure 1 for an illustration). It
was shown in [12] that for (1) in domains n, n′ � 1, the cross-section can be obtained from
the probabilities of n → n′ transitions by applying first-order perturbation theory. It was also
observed that the domains of neighbouring resonant points (for example, Rn;n′ and Rn;n′+1)
partially overlap. The efficiency of processes (1) and (2) is also caused by the fact that the
resonant distances Rn;n′ , satisfying (5), at n � 1 are several times larger than the atomic unit
length a0. This is illustrated in table 1 by the factor Rn;n+p/a0, calculated for 4 � n � 10 and
1 � p � 5.

The straight trajectory approximation applied in [11, 12] could not be used for the cross-
section calculations of processes (1) in domains of small collisional velocities, where this
approximation was valid only for large impact parameters. Because of this, in [4] a different
approximation was used: in the collisional system H∗(n) + H in domains of internuclear
distances satisfying (5), the initial electronic state of the subsystem H+ + H was assumed
to be either in |1, R〉 or in |2, R〉 states with the probability 1/2. In the case of chemi-
ionization processes (3), initially in the state |2, R〉, the relative movement of the nuclei in
the H∗(n) + H system was described by the trajectory calculated in the potential U2(R). The
chemi-ionization process was treated as a result of the system’s transition from the initial
bound electronic state |2, R; n〉 = |2, R〉|n〉 of the whole system into final continuum states,
as illustrated in figure 1. Hence the processes of (3) type were described by the decay
approximation and corresponding decay rates, which were used in [5] for the semi-classical
method for rate coefficient calculations.

Note that these models can be applied both to processes (1) and (3). In [18], a method
for rate coefficient calculations in (n − n′)-mixing processes was presented. It was applied in
the case of weakly ionized plasmas, where the collisional velocities are small (with collisional
energies E � 1 eV). Processes (1) were modelled as a decay of the system’s initial electronic
state |2, R; n〉, and characterized by the decay rate. A modified version of the semi-classical
method in [18] is used here for the rate coefficient calculations of processes (1) and (2).

3. The rate coefficients

Consider the case when the subsystem H+ + H of the collisional system H∗(n) + H is in the
initial electronic state |2, R〉, which means that the nuclei are moving in the potential U2(R).
This movement is described by the trajectory defined by the impact parameter and collisional
energy. The transitions n → n+p, p � 1, will be treated as a result of the decay of the system
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initial electronic state |2, R; n〉 = |2, R〉|n〉 in domains of internuclear distances satisfying (5).
In these domains it is assumed that the decay is a continuous process taking place along the
trajectory. The assumption is based on the well-known concept of ‘smearing’ part of a discrete
spectre into a corresponding continuum.

We introduce an initial Rydberg state of an outer electron |n〉 = |n, l,m〉 and blocks of
Rydberg states |n′〉 = |n′, l′,m′〉 with fixed quantum numbers l′ and m′, satisfying:

n + p1 � n′ � n + p2, (13)

where in the general case we have

p2 � p1 � 1. (14)

Every block containing p2 − p1 + 1 discrete states corresponds to a block of continuous states
characterized by quantum numbers n′′, l′ and m′, where n′′ is continuously changed from
n + p′

1 to n + p′
2, and energies εn′′ , satisfying∫ εn+p′

2

εn+p′
1

ρn;n′′(l′,m′) dεn′′ = p2 − p1 + 1, (15)

∫ εn+p′
2

εn+p′
1

fn;n′′(l,m; l′,m′)ρn;n′′(l′,m′) dεn′′ = f (n, p1, p2; l′,m′). (16)

Here ρn;n′′(l′,m′) is the density of continuous states |n′′, l′,m′〉, fn;n′′(l,m; l′,m′) is the
oscillator strength for |n, l,m〉 → |n′′, l′,m′〉 transitions and f (n, p1, p2) is the total oscillator
strength for the transition of the outer electron from the |n, l,m〉 state to a given block
of Rydberg states. We will assume that εn′′ = −Ry/n′′2 in order to have an appropriate
distribution of continuous states, and

ρn;n′′(l′,m′) = dn′′

dεn′′
= n′′3

2Ry
. (17)

From equation (15) it follows that the parameters p′
1,2 must satisfy the expression

p′
2 − p′

1 = p2 − p1 + 1. (18)

While in [18] we had p′
1 = p1 and p′

2 = p2 + 1, here p′
1 and p′

2 are given as:

p′
1 = p1 − �p, p′

2 = p2 + 1 − �p, 0 � �p < 1, (19)

where it is assumed that �p = �p(n, p1, p2).
Let |2, R; n, l,m〉 = |2, R〉|n, l,m〉 be the initial state of the system H∗(n) + H in the

domain of internuclear distances satisfying (5). The described resonant mechanism generates
transitions into the final states |1, R; n′, l′,m′〉 = |1, R〉|n′, l′,m′〉 in the vicinity of the point
R = Rn;n′ . Because these transitions are treated as results of continuous decay of the initial
state, the total transition probability of the outer electron from the state |n, l,m〉 into the blocks
of Rydberg states defined by equation (13) is identified with the total transition probability into
blocks of continuous states. These are described in a quasi-static approximation, similarly to
the chemi-ionization processes in [4], and are characterized by the decay rate

Wn′′
n;l,m = 2π

h̄

∑
l′,m′

|〈n, l,m; 2, Rn;n′′ |Vd |1, Rn;n′′ ; n′′, l′,m′〉|2ρn;n′′(l′,m′). (20)

Here |1, Rn;n′′ ; n′′, l′,m′〉 = |1, Rn;n′′ 〉|n′′, l′m′〉, dipole interaction operator Vd is given by
equation (9), and Rn;n′′ is the internuclear distance which satisfies:

U2(Rn;n′′) − U1(Rn;n′′) = εn;n′′ , (21)
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where

εn;n′′ = εn′′ − εn. (22)

States |1, R; n′′, l′,m′〉 will be treated through matrix elements in (20). Namely, we will
assume that: the expression for element 〈n, l,m; 2, R|Vd |1, R; n′′, l′,m′〉 can be obtained
from the expression for element 〈n, l,m; 2, R|Vd |1, R; n′, l′,m′〉 by substituting n′ with n′′;
the squares of moduli of matrix elements |〈n, l,m; 2, R|Vd |1, R; n′, l′,m′〉|2 can be written
[19] as

|〈n, l,m; 2, R|Vd |1, R; n′, l′,m′〉|2

= m2h̄4

e2
(εn′ − εn)

4|〈n, l,m|rR|n′, l′,m′〉|2|〈1, R|dR|2, R〉|2. (23)

Here m is the mass of electrons, and rR and dR denote the projections of the outer electron
radius �r and dipole momentum operator �d of the subsystem H+ + H onto the internuclear axis,
respectively. Using equation (20) we then have

Wn′′
n;l,m = 2πm2

h̄5e2
ε4
n;n′′

∑
l′,m′

|〈n, l,m|rR|n′′(R), l′,m′〉|2|〈1, R|dR|2, R〉|2ρn;n′′(l′,m′). (24)

The next step in our model is to introduce the average decay rate Wn;n′′ of the initial collisional
system H∗(n) + H, defined as:

Wn;n′′ = 1

n2

∑
l,m

Wn′′
n;l,m. (25)

In the quasi-static approximation we have∑
l,m

∑
l′,m′

|〈n, l,m|rR|n′′, l′,m′〉|2 = 1

3

∑
l,m

∑
l′,m′

|〈n, l,m|�r|n′′, l′,m′〉|2. (26)

Assuming that R in the domain relevant for the process is several times larger than the atomic
unit length, we have [4, 12]

|〈1, R|dR|2, R〉|2 = e2R2

4
. (27)

From equations (17), (24), (26) and (27), the average decay rate Wn;n′′ is:

Wn;n′′ = πm

4h̄3 ε3
n;n′′

n′′3

2Ry
fn;n′′R2

n;n′′ , (28)

where fn;n′′ is the average oscillator strength for the n → n′′ transition, given by

fn;n′′ = 1

n2

∑
l,m

∑
l′,m′

f
n′′;l′,m′
n;l,m , (29)

f
n′′;l′,m′
n;l,m = 2m

3h̄2 (εn′′ − εn)|〈n, l,m|rR|n′′(R), l′,m′〉|2. (30)

The expression for fn;n′′ is obtained by substituting n′ with n′′ in the expression for fn;n′

from [19]:

fn;n′′ = 25

3
√

3π
n

(
n′′

n′′2 − n2

)3

gn;n′′ , (31)
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Figure 3. A diagram showing the partial ‘smearing’ of a discrete Coulomb spectre into a continuum.

where gn;n′′ is the Gaunt factor. After substituting εn′′ and εn into equation (28) with their
expressions, we have finally

Wn;n′′ = R2
n;n′′

3
√

3n5
gn;n′′ . (32)

This expression is the same as the decay rate of the initial state of the system H∗(n) + H, in the
case of chemi-ionization processes [4]. In domain n � 1 a function gn;n′′ is slowly changing
for different n′′, and we can assume:

gn;n′′ = gn;n′ = n+p, (33)

for n′ − �p � n′′ < n′ + 1 − �p. Note that the expression (32) was considered in [20]
for processes (1) for n′ > n, which are similar to chemi-ionization processes. However, the
expression here is based on equation (31) applied for fn;n′′ .

Further procedures for rate coefficients for processes (1) are the same as for chemi-
ionization processes (3), described in detail in [5]. Because of this, only the main steps will
be presented here. For transitions n → (n′′, n′′ + dn′′), illustrated in figure 3, the differential
probability, differential cross-section and differential rate coefficient are given by:

dPn;n′′ = 1

2
(2Wn;n′′ dt) = Wn;n′′

dR

vrad(b, E,Rn;n′′)
, (34)

dσn;n′′(E) = 2π

∫ bmax(E,Rn;n′′ )

0
dPn;n′′b2 db, (35)

dKn;n′′(Ta) =
∫ ∞

εn;n′′
fTa(E)v(E) dσn;n′′

√
E dE, (36)

where b and E are the impact parameter and collisional energy, Rn;n′′ is defined by equation
(21), and v(E) = (2E/µ)1/2 is the radial velocity:

vrad(b, E,Rn;n′′) =
{

2E

µ

[
E − U2

(
Rn;n′′ − Eb2

R2
n;n′′

)]}1/2

. (37)
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µ is the reduced mass of collisional particles, fTa(E) is the Maxwell distribution function for
atomic temperature Ta, normalized by the condition∫ ∞

0
fTa(E)

√
E dE = 1. (38)

A parameter bmax(E,Rn;n′′) is calculated from the equation:

vrad(bmax, E,Rn;n′′) = 0, (39)

and Emin(n; n′′) = U2(Rn;n′′). From equations (22) and (34)–(39) the differential rate
coefficient dKn;n′′ is written as:

dKn;n′′(Ta) = 2π

3
√

3

e2

h̄a3
0

n−5gn;n′′X(Rn;n′′)

{
R4 exp

[
−U2(R)

kTa

]}
R=Rn;n′′

dR, (40)

where a0 is the atomic unit length, and X(Rn;n′′) is:

X(Rn;n′′) =
�

(
3
2 ,

−U1(Rn;n′′ )
kTa

)
�

(
3
2

) , (41)

�(3/2, x) i �(x) being incomplete and complete gamma functions.
Kn;n+p1,n+p2(Ta) denotes the total rate coefficient of processes (1) for the transitions of an

outer electron of the system H∗(n) + H into all states with the principal quantum number n′

from domain (13). This is calculated using

Kn;n+p1,n+p2(Ta) =
∫ n+p2+1−�p

n+p1−�p

dKn;n′′(Ta). (42)

A similar method to this for calculating Kn;n+p1,n+p2(Ta) was applied in calculating the
coefficient of continuous absorption from a block of Rydberg states, the rate coefficient
for electron–ion photo-recombination with free electron transition in a given block of Rydberg
states (see [21, 22]), and for electron–ion–atom recombination [1]. The oscillator strength
was assumed to be a continuous function of the principal quantum number.

To calculate the rate coefficient of processes (1) for fixed n and n′ = n + p, denoted by
Kn;n+p(Ta), we will use that:

Kn;n+p(Ta) = Kn;n+p1,n+p2(Ta), (43)

for p1 = p2 = p, and

Kn;n+p1,n+p2(Ta) =
p2∑

p=p1

Kn;n+p(Ta), (44)

for 1 � p1 < p2. From (33), (40), (42) and (43) it follows that Kn;n+p(Ta) can be written as:

Kn;n+p(Ta) = 2π

3
√

3

(ea0)
2

h̄
n−5gn;n+p

∫ Rmax(n,n+p)

Rmin(n,n+p)

X(R) exp

[
−U2(R)

kTa

]
R4 dR

a5
0

, (45)

where Rmin(n, n + p) and Rmax(n, n + p) are calculated from equations

ε(R = Rmin) = εn+p+1−�p − εn, ε(R = Rmax) = εn+p−�p − εn, (46)

ε(R) = U2(R) − U1(R). (47)

So far it has been assumed that the parameter �p = �p(n, p1, p2) satisfies equations (16)
and (19). However, equations (44) and (45) are in accordance with (15)–(19) for any n, p1

and p2 if �p(n, p1, p2) = const. This parameter is a slowly varying function of n, p1 and p2,
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if n � 1. Hence we will consider the case p1 = p2 = 1, and the parameter �p is calculated
from equation ∫ n+2−�p

n+1−�p

25

3
√

3π
n

(
n′′

n′′2 − n2

)3

dn′′ = 25

3
√

3π
n

[
n + 1

(n + 1)2 − n2

]3

. (48)

Within the domain 4 � n � 10, the parameter �p is practically constant, and we will assume
its value �p = 0.380, this corresponding to n = 5.

The rate coefficients Kn;n−p(Ta) for de-excitation processes (2) are obtained from the
thermodynamic balance principle

Kn−p;n(Ta)N(n − p)N(1) = Kn;n−p(Ta)N(n)N(1). (49)

N(1) is the concentration of atoms H(1s). N(n − p) and N(n) are concentrations of Rydberg
atoms H∗(n − p) and H∗(n), given by expressions

N(n − p) = N(1)(n − p)2 exp

(
−Ry + εn−p

kTa

)
,

N(n) = N(1)n2 exp

(
−Ry + εn

kTa

)
.

(50)

Finally, we have:

Kn;n−p(Ta) = Kn−p;n(Ta)
(n − p)2

n2
exp

(
εn−p;n
kTa

)
, (51)

with εn−p;n given by (10) with n′ = n − p.

4. Results and discussion

The rate coefficients Kn;n+p(Ta) and Kn;n−p(Ta) for processes (1) and (2) are calculated in the
domains of n and Ta corresponding to conditions in weakly ionized hydrogen plasmas. The
results for Kn;n+p(Ta) with 4 � n � 10, 1 � p � 5 and 3000 K � Ta � 7000 K are obtained
from (45) and presented in table 2. The values for U1,2(R) and ε(R) can be obtained from data
in [14] or from analytical expressions in [23]; the Gaunt factor gn;n+p is approximated as in
[24]. The rate coefficients Kn;n−p(Ta) are calculated from (51) using coefficients Kn−p;n(Ta).

The relative influence of processes (1) and (2) in weakly ionized hydrogen plasmas is
established by comparison with electron–atom collisional processes:

�ek + H∗(n) → �ek′ + H∗(n′), (52)

where n′ = n ± p. The rate coefficients of processes (52) are denoted with αn;n′(Te).
A similar comparison has been made in [18] where the rate coefficients for processes

(52) were obtained from data in [25]. However, later we found that such αn;n′(Te) values in
domains 4 � n � 20 and 4000 K � Ta � Te � 20 000 K are 7–12 times higher than the more
accurate ones obtained in [26]. This error greatly underestimated the influence of processes
(1) and (2). Here the rate coefficients αn;n±p(Te) for processes (52) are taken from [26]. A
relative efficiency of processes (1) and (2) is given by the parameter Fn;n±p(Ta, Te):

Fn;n±p(Ta, Te) = Kn;n±p(Ta)N(n)N(1)

αn;n±p(Te)N(n)Ne

= Kn;n±p(Ta)ηea

αn;n±p(Te)
, (53)

ηea = N(1)

Ne

, (54)

where Ne is the concentration of free electrons.
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Table 2. Excitation rate coefficients Kn;n+p(Ta) (10−9 cm3 s−1).

Ta(103K)

n p 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

1 4.4232 5.0133 5.4997 5.9047 6.2456 6.5355 6.7845 7.0003 7.1887
2 0.7228 0.8997 1.0576 1.1973 1.3205 1.4293 1.5256 1.6112 1.6876

4 3 0.2401 0.3155 0.3860 0.4506 0.5092 0.5621 0.6098 0.6528 0.6917
4 0.1091 0.1483 0.1861 0.2216 0.2544 0.2844 0.3118 0.3367 0.3595
5 0.0592 0.0824 0.1053 0.1270 0.1474 0.1662 0.1835 0.1994 0.2140

1 3.3708 3.5901 3.7604 3.8960 4.0061 4.0972 4.1736 4.2385 4.2943
2 0.7642 0.8574 0.9332 0.9956 1.0476 1.0916 1.1291 1.1614 1.1895

5 3 0.3020 0.3502 0.3906 0.4246 0.4534 0.4781 0.4995 0.5180 0.5343
4 0.1524 0.1808 0.2050 0.2257 0.2435 0.2589 0.2723 0.2840 0.2944
5 0.0887 0.1069 0.1227 0.1364 0.1482 0.1585 0.1676 0.1755 0.1825

1 2.2484 2.3282 2.3886 2.4356 2.4731 2.5038 2.5292 2.5507 2.5690
2 0.6072 0.6488 0.6812 0.7069 0.7278 0.7451 0.7596 0.7719 0.7825

6 3 0.2658 0.2902 0.3096 0.3252 0.3380 0.3487 0.3577 0.3654 0.3721
4 0.1435 0.1591 0.1716 0.1818 0.1903 0.1974 0.2035 0.2087 0.2132
5 0.0875 0.0982 0.1068 0.1139 0.1198 0.1248 0.1291 0.1328 0.1360

1 1.4721 1.5029 1.5258 1.5434 1.5574 1.5687 1.5780 1.5859 1.5925
2 0.4415 0.4599 0.4739 0.4848 0.4935 0.5006 0.5065 0.5116 0.5158

7 3 0.2065 0.2182 0.2272 0.2344 0.2401 0.2449 0.2488 0.2522 0.2550
4 0.1166 0.1246 0.1308 0.1357 0.1397 0.1430 0.1458 0.1482 0.1502
5 0.0735 0.0792 0.0837 0.0873 0.0902 0.0926 0.0946 0.0964 0.0978

1 0.9787 0.9913 1.0007 1.0078 1.0134 1.0180 1.0217 1.0248 1.0275
2 0.3144 0.3228 0.3291 0.3339 0.3378 0.3409 0.3435 0.3457 0.3475

8 3 0.1538 0.1595 0.1638 0.1672 0.1699 0.1721 0.1739 0.1755 0.1768
4 0.0897 0.0938 0.0969 0.0993 0.1013 0.1029 0.1042 0.1053 0.1063
5 0.0580 0.0610 0.0633 0.0651 0.0666 0.0678 0.0688 0.0697 0.0704

1 0.6669 0.6724 0.6764 0.6795 0.6819 0.6839 0.6855 0.6868 0.6879
2 0.2248 0.2288 0.2318 0.2340 0.2358 0.2373 0.2385 0.2395 0.2404

9 3 0.1136 0.1165 0.1186 0.1203 0.1216 0.1227 0.1236 0.1243 0.1249
4 0.0679 0.0700 0.0716 0.0729 0.0738 0.0747 0.0753 0.0759 0.0764
5 0.0447 0.0463 0.0476 0.0485 0.0493 0.0499 0.0504 0.0508 0.0512

1 0.4663 0.4688 0.4707 0.4721 0.4732 0.4740 0.4748 0.4754 0.4759
2 0.1629 0.1649 0.1663 0.1675 0.1684 0.1691 0.1697 0.1701 0.1706

10 3 0.0843 0.0859 0.0870 0.0878 0.0885 0.0890 0.0895 0.0899 0.0902
4 0.0514 0.0525 0.0534 0.0540 0.0545 0.0550 0.0553 0.0556 0.0559
5 0.0343 0.0352 0.0359 0.0364 0.0368 0.0372 0.0374 0.0377 0.0379

Calculated values of Fn;n+p(Ta, Te) for 4 � n � 10, 1 � p � 5, Te = 5 × 103, 1 × 104

and 2 × 104 K, Ta = 5 × 103 K, and η = 104, are presented in figures 4–6. The parameters’
ranges correspond to plasmas with an ionization degree ∼10−4, which was analysed previously
in [7, 8, 10, 27]. For 7 < n � 10 the efficiency of processes (1) is comparable to that of
processes (52), while for n � 7 processes (1) are dominant. This is true for both equilibrium
(Te = Ta, figure 4) and non-equilibrium plasmas (Te > Ta, figures 5, 6). The same is valid for
processes (2). Therefore, the influence of these processes in the modelling of weakly ionized
plasmas and the interpretation of experimental results must be taken into account.
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Figure 4. Parameter Fn;n+p(Ta, Te) values given by equation (53) for Ta = 5000 K and Te =
5000 K.

Figure 5. Same as in figure 4 but for Te = 10 000 K.

Note that in [10] the significance of processes (3) and (4) on Rydberg states in weakly
ionized plasmas (stars’ photosphere with effective temperatures of around 4000 K) has been
established. It was shown that they are important for at least up to n = 20, and dominant
for n � 7. A similar effect is expected for processes (1) and (2). Also, it is important that
excitation processes (1) and chemi-ionization processes (3), due to the established sameness
of their decay rate expressions, can be treated from now on in the frame of a unique numeric
procedure.

The (n − n′)-mixing processes in atom–Rydberg atom collisions can be important for
other atomic systems. We are thinking here of He∗(n) + He(1s2), and A∗(n) + A collisions
where A is an alkali atom in a ground state.
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Figure 6. Same as in figure 4 but for Te = 20 000 K.
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