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1. INTRODUCTION

In the previous paper [1], here Part 1, the aims of
this research were already described, as well as the
stimuli for its starting. Accordingly to these aims the
new model method of describing of the electrostatic
screening in electron-ion plasmas and other two-com-
ponent systems (e.g. dusty plasmas and some electro-
lytes) which relies on the basic model (a1) – (a3) is pre-
sented in this part. This method is free of non-physical
properties of Debye-Hückel’s (DH) method and posses
the positive features (b1) and (b2) described in Section 1
of Part 1, together with the basic model.

2. THEORY ASSUMPTIONS

 

2.1. Screening Model 

 

A stationary homogeneous two-component system

 

S

 

in

 

 is taken here as the initial model of some real phys-
ical objects. We will assume that 

 

S

 

in

 

 is constituted by a
mix of two gases: one of positive charged ions (of only
one kind), and other of electrons. It is assumed that
these gases there are in the equilibrium states with tem-
peratures 

 

T

 

i

 

 and 

 

T

 

e

 

 > 

 

T

 

i

 

, and mean local particle density

 

N

 

i

 

 and 

 

N

 

e

 

. All the particles are treated as point objects
with the charge 

 

Z

 

e

 

e

 

 in the case of electron, and 

 

Z

 

i

 

e

 

 in
the case of ion, where 

 

Z

 

e

 

 = –1, 

 

Z

 

i

 

 = 1, 2, …

 

, and 

 

e

 

 

 

is the
modulus of the electron charge. Let us note that in this
paper the electron charge will be also denoted by 

 

–

 

e

 

. It
is understood that the parameters 

 

Z

 

e, i

 

 and 

 

N

 

e

 

, is satisfy
the local quasi-neutrality condition
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as well as that 

 

N

 

e

 

 and 

 

T

 

e

 

 allow the non-relativistic treat-
ment of the electron component.

In accordance with the properties (a1) and (a2), the
screening of a charged particles in the system 

 

S

 

in

 

 will be
modeled in the corresponding accessory systems each
of which differs from 

 

S

 

in

 

 in that, besides the two
described components, it also contains a fixed probe
particle with charge 

 

Z

 

p

 

e

 

 in the origin of the chosen ref-
erence frame (point 

 

O

 

). Here we will study two cases:
the ion case (

 

i

 

), when 

 

Z

 

p

 

 = 

 

Z

 

i

 

, and the electron case (

 

e

 

),
when 

 

Z

 

p

 

 = 

 

Z

 

e

 

 = –1, when the probe particle represents
one of the particles of the system 

 

S

 

in

 

. In accordance
with this, we will denote here the corresponding acces-

sory system with 

 

 

 

or . This system will be char-

acterized by: the ion and electron densities 

 

(

 

r

 

)

 

 and

 

(

 

r

 

)

 

, the mean local charge density

 

(2)

 

and the mean electrostatic potential 

 

Φ

 

(

 

i

 

, 

 

e

 

)

 

(

 

r

 

)

 

, where 

 

r

 

 = 

 

|

 

r

 

|

 

and 

 

r

 

 is the radius-vector of the observed point. It is
assumed the satisfying of the boundary conditions

 

(3)

 

and the condition of neutrality of the systems  as
wholeness

 

(4)
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Then, we will take into account that the 

 

Φ

 

(

 

i

 

, e)(r) and
ρ(i, e)(r) have to satisfy Poisson’s equation

(5)

where δ(r) is three-dimensional delta function [2].
From the same reason as in Part 1, this equation applies
in the whole region r > 0. It is assumed the satisfying
the boundary conditions

(6)

(7)

Since ϕ(i, e) is the mean electrostatic potential in the
point O, the quantity

(8)

is the potential energy U(i, e) of the probe particle. In an
usual way U(i) and U(e) are treated as approaches to the
mean potential energies of the ion and electron in the
system Sin.

In accordance with the properties (a2) and (a3) the
conditions of thermodynamical equilibrium of the ion
component in the case (i), as well as the electron com-
ponent in the case (e), will be taken in the form

(9)

where µi( (r), Ti) and µe( (r), Te) are the chemical
potentials of the ideal ion and electron gases, which can
depend of the corresponding particle spins, considered
on the distance r from the point O. On the base of the
considerations from Part 1 one should keep in mind that
the equations (9) are applicable only in the regions

(10)

where rs; i and rs; e are the corresponding Wigner-Seitz’s
radii. In the used procedure the equation (9) is taken in
the linearized form

(11)

but under the condition

(12)

It is important that the conditions (10) and (12) are
compatible in all considered cases.

Since we take the single-component systems con-
sidered in Part 1, as a boundary case of two-component
systems (when it is spread one of their components), we

will require that the ion density  in the case (i) and
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the electron density  in the case (e) satisfy the equa-
tion

(13)

which is analogous of the equation (21) from Part 1.
From Eqs. (4) and (13) it follows that the electron den-

sity  in the case (i) and ion density  in the case
(e) have to satisfy another equation

(14)

Let us emphasize that the relations (13) and (14) can
be obtained on the base of the interpretation of the sys-

tems  which is given in Appendix D. In further
considerations is used the fact that simultaneous satis-
fying of the conditions (13) and (14) automatically pro-
vide the satisfying of neutrality condition (4).

2.2. The Critical Analysis of DH Method 

The procedure of obtaining of DH solutions is
described in Appendix A. The Figure 1 shows the

behavior of the particle densities (r) and (r),

and charge density (r). This figure illustrates that
the behavior of DH densities of the free particles with
the same charge as the probe particle is qualitatively
same as in the case which is considered in the Part 1.
Consequently, the procedure of the elimination of the

non-physical properties of (r) in the case (i), and

(e) in the case (e) will be similar to the procedure
which is described in Part 1.

The main disadvantage of DH method consists in
the monotonous increasing of DH densities of the free
particles, which the charge is opposite to the charge of
the probe particle, with the decreasing of r in the whole
region r < ∞. This fact is illustrated by the behavior of

(r) in Fig. 1. Because of such a behavior DH solu-
tions principally can not satisfy the conditions (14).
Namely, from results of Appendix A it follows that in
DH case the left side of those conditions is not equal to
zero, but it is proportional to Zi in the case (i), and 1/Zi

in the case (e). The consequence of this fact is the prin-
cipal impossibility to treat the probe particle as a repre-
sent of a particle in the system Sin. For an example, in
the case of completely classical electron-ion plasma
with Zi = 1 and Ti = Te from the non-satisfying of the
conditions (14) it follows that the mean number of elec-
trons per ion should be 3/2, instead of 1.

The described disadvantage is a consequence of two
facts: that in DH method the first step is determining of
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electrostatic potential (r) in the whole space,
and the equations (11) are used together with the
equations (56) in Appendix A. Because of that within
DH method the electron and ion components are
“smeared” in the space simultaneously and indepen-
dently in both (i) and (e) cases.

2.3. What One Should Do in Order
to Avoid Non-Physicality of DH Method?

In accordance with above mentioned, our main task
is finding of such a procedure within the basic model
(see Section 1 in Part 1), which would be alternative
one to DH procedure. It assumes that sought procedure
has to provide the possibility of determining of the

solutions (r) and (r) in the same way as it was

described in Part 1, and the solutions (r) and (r)
without using the first equations (56) Appendix A.
Also, the satisfying of the conditions (13) and (14) is
assumed.

3. THE PRESENTED METHOD: 
THE ELECTRON AND ION DENSITIES

3.1. The Case (i)

The solution (r). In order to solve our task we

start from such a picture of the system  where elec-
trons are treated in the electrostatic field of the probe
particle and all ions (treated in a classic way) which are
distributed in discrete points, as it is illustrated by Fig. 2.
On the base of this picture, the procedure of the

ΦD
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expressing of (r) in the region r > rs; i trough (r)
is developed in the first part of Appendix B. The results
of this procedure can be presented in the form

(15)

where the parameter α will be determined in further
text. This relation, together with Eq. (2), makes possi-
ble to represent the charge density ρ(i)(r) in the form

(16)

and to use for determination of (r) the procedure
which is described in details in Sections 3 and 6 of
Part 1. As first, by means, Eqs. (11) and (16) it is
obtained the equation of Volterra’s type, namely

(17)

where

(18)

One can see that in the two-component case the ion
screening constant κi and the corresponding character-
istic length rκ; i depend on the parameter (1 – α)1/2.

Accordingly to Part 1, the solution of the equation (17)
in the general case can be taken in the form ρ(i)(r) =
ciZieexp(–κir)/r. From here and Eq. (17) it follows that

ion density (r) in the region rs; i < r < ∞ is given by
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Fig. 1.

 

 The reduced DH densities 

 

(

 

r

 

)/

 

N

 

i

 

 (

 

1

 

),

(

 

r

 

)/

 

Ne (2) and (r)/(–eNe) (3) in the case Zi = 1,

Te = Ti Ë κDrs; i = 1, where κD is Debye’s screening constant
given by (57). Shadowing emphasize the non-physical devi-

ation of ; e from the asymptotic value Ne.
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Fig. 2. 

 

The schematic picture of ion-electron plasma. Shad-
owed areas represent the regions of 

 

r

 

 without of probe par-
ticle’s and all ion’s self-shells. With 

 

O

 

 and 

 

O

 

' the places of
the probe particle in the case (

 

i

 

) and one of ions are denoted,
and with the dotted lines probe particle and ions self spheres
are shown.
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the relation 
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 and applying to this relation the extrap-
olation procedure from Part 1, we obtain the sought

expression for 
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r
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 in the whole space
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where the new characteristics length 
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0;

 

 

 

i

 

 has to be deter-
mined from the condition (13). Using the results of Part 1
we can present the radius 
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 in two equivalent forms
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where the coefficients 
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 and 

 

γ
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 are given by
Eq. (28) from Part 1, and 
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—by Eq. (10).

 The solution  (  r  )  .   In order to determine  (  r  )   in
the probe particle self-sphere (0 < 

 

r 

 

< 

 

r

 

s

 

;

 

 

 

i

 

), we will take
into account that in the system 

 

S

 

in

 

 the mean number of
electrons in the sphere with volume 
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, which is cen-
tered at some ion (the ion self-sphere), is larger than the
mean number of electrons in every fixed sphere with the
same volume, i.e. 
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e

 

(1/
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i

 

) = 

 

Z
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, because of the addi-
tional electrons whose presence is caused by presence
of other ions. In accordance with this we will find
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 in the probe particle self-sphere in the system
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 in the form
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tribution of 

 

Z

 

i

 

 electrons which there are in the probe
particle self-sphere independently of the presence of
ions, while the member 

 

n

 

e

 

;

 

 

 

ion

 

(

 

r

 

)

 

 describes the distri-
bution of the mentioned additional electrons. Let us
emphasize that such a treatment of the difference
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 which is described in
the second part of Appendix B.

In order to establish the connections between the
members in Eqs. (15) and (22), we will assume that the
form of the equation (15), which transforms at 
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 to
equality 
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the system Sin of the spatial correlation between elec-
trons and ions. It means exceptionally following: in
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electrons independently of presence of ions, and 
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electrons whose presence is caused by the presence of
ions. The fact that the presence of ions in some volume
causes the presence of additional electrons itself has
already been used above, while here it is assumed that
just the parameter 

 

α

 

 in Eq. (15) represents the quantita-
tive characteristic of the mentioned electron-ion corre-

lation in the system . Because of that the first of the
mentioned connections is given by the relation

 

(24)

 

which corresponds to the way of obtaining of the ion
density, and provides the satisfaction of three condi-
tions: that the member 
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; the ratio of the mean numbers
of additional electrons and ions in the probe particle
self-sphere has to be equal to correlation coefficient, i.e.
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 under adopted conditions. Another of the mentioned
connections is the condition
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The physical sense of this condition is discussed in the
further text.
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where the coefficients 
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is given by the expression
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needed expression for the electron density in the whole
space

(36)

(37)

where κ0; e is defined by (27), and the electron screening
constant κe and the corresponding characteristic length
rκ; e depend on the parameter (1 – α)1/2. The radius r0; e,
similarly to the case (i), can be presented in two equiv-
alent forms

(38)

(39)

where γs(x) and γκ(x) are given by relations (28) from
Part 1, and rs; e—by Eq. (10).

The solution (r). Repeating the procedure from

Section 3.1 we will find the ion density (r) inside the
probe particle self-sphere, 0 < r ≤ rs; e, in the form

(40)

where the member ni; s(r) satisfies the conditions

(41)

(42)

which play similar role as the conditions (23) and (25)
in the case (i).

The way of determination of ni; s(r) is described
in second part Appendix C, and as the result ni; s(r) is
presented as a superposition of exponents multiplied
by r–1. After determination of the coefficients in the
superposition from the conditions (41) and (42), the
member  can be presented in the form

(43)

where a and b are given by Eq. (29) and xs—by
Eq. (30). Finally, from Eqs. (35), (40) and (43) it fol-

lows the expression for (r) in the hole space

(44)

where (r) and ni; s(r) are given by Eqs. (36)–(39)

and (43), which provide that (r) satisfies the condi-
tion (14), and α is given by Eq. (31).

It can be shown that the member ni; s(r) monoto-
nously increases in the region r < rs; e with the decreas-
ing of r and satisfies the equality

(45)

which provides smoothness of (r) in the point r = rs; e.

Consequently, it guarantees that the ion density (r)
in the case (e) has the similar properties as the electron

density (r) in the case (i).

4. THE SOLUTIONS ρ(i; e)(r) AND Φ(i; e)(r), 
AND THE PROBE PARTICLES 
POTENTIAL ENERGIES U(i; e)

By means Eqs. (2), (19), (33), (36) and (44) the
charge densities ρ(i, e)(r) can be presented in the form
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where (r) and (r) are given by Eqs. (19) and
(36), and Eqs. (28) and (43), respectively. One can see
that the expression (47) has the same structure as the
corresponding expression from Part 1 and becomes
identical to it for α = 0, while (48) describes the contri-

bution of the quantity (r) – Ne, i(1 – α), which
characterizes just two-component systems.
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, as well as the potentials 
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 defined by
Eqs. (7), in the form
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where the first and second members describe the contri-

butions of the members 
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 in Eq. (46).
It can be shown that by means Eqs. (47) and (48), as
well as Eqs. (51)–(53) from Part 1, the members
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 and 
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 can be presented in the form
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 and 
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 are defined by Eqs. (21) and (39), 
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—
by Eq. (30), the function 
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—by Eq. (30) from Part 1.

The quantities  and ; s are obtained by means
Eqs. (47) and (48), as well as Eq. (52) from Part 1, and
presented in the form

 

(52)

(53)

 

where the coefficients 

 

a

 

 and b are given by Eqs. (29),
and the radii r0; i, e—by Eqs. (20), (21), (38) and (39), as
well as Eq. (28) from Part 1.

In accordance with Eqs. (8), (49), (52) and (53) it is
appropriate to find the potential energies U(i, e) of the
probe particles in the cases (i) and (e) in the form

(54)

where the quantities  and  are given by
Eqs. (52), (53). It can be shown that, because of the

structure of Eq. (52), the member  can be taken

as:  = (1 – α)U, with U given by one of two equiv-
alent expressions (32) and (33) from Part 1, where the
parameters Z, x, rκ and rs are replaced by Zi, e, xi, e, rκ; i, e
and rs; i, e. The Figure 4 illustrates the behavior of the
ratio of the probe particle potential energy, determined
by means to Eqs. (52), (53) and (54), and the corre-

sponding DH energy, defined in Appendix A, in the
case of the classical plasma with Zi = 1 and Te = Ti. This
figure shows that in two-component case the DH
region, i.e. the region where this ratio is close to unity,
principally does not exist.

5. RESULTS AND DISCUSSIONS

The expressions (19)–(33) and (36)–(50) show that
the obtained solutions satisfy all conditions from Sec-
tion 2, are free of all non-physical properties of DH
solutions, and possesses the positive properties (b1)
and (b2), noted in Section 1 of Part 1. The behavior of
electron, ion and the charge density is illustrated by Fig. 5.
The way of their obtaining provides the possibility of
their application, independently of the treatment (clas-
sical or quantum mechanical) of electron and ion com-
ponents of the considered systems. Apart of that, the
structure of these expressions makes possible their
application not only to electron-ion plasmas, but also to
ion-ion two-component systems (e.g. some electro-
lytes).

Since Eqs. (28), (33), (43) and (44) show that the

solutions (r) are singular in the point r = 0, it is
useful to note that the existence of singularities in
model solutions is fully acceptable, if it has not other
non-physical consequences. Such solutions are well
known in physics: it is enough to mention, for example,
Thomas-Fermi’s models of electron shells of heavy
atoms [3, 4] (see also [5]), which used in plasma
research till now (see e.g. [6]).

In the case of two-component system are obtained
the parameters r0; i, e, γs(xi, e) and γκ(xi, e), given by
Eqs. (20), (21), (38) and (39), analogous to that ones
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from Part 1. In accordance with Eq. (28) from Part 1 the
parameters 
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 satisfy the conditions
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—by
Eqs. (21) and (39). These conditions make possible the
treatment of 
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 as the radii of the spheres cen-
tered on the probe particles, which are classically for-
bidden for the free charged particles from their neigh-
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—some kind of non-
ideality parameters (see Part 1). From (55) it follows
also that Eqs. (19), (33), (36) and (50) for electron and
ion densities are 

 

applicable to the two-component sys-
tems with any non-ideality degree

 

.
Also, in this paper is obtained the quantity 
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,
defined by Eqs. (30) and (31), which has the sense of
the coefficient of electron-ion correlation. Let us note
that two simple approximative expressions for 
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,
which serve very well in wide region of 

 

x

 

s

 

, will be given
in Part 3.

One of the most important results of this papers is
establishing of the fact that in two-component plasmas
ion and electron components have to be described
exceptionally by means of screening constants 
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cipally do not have the physical sense

 

. It is confirmed
by Fig. 4 where the probe particle potential energies
obtained here are compared with the corresponding DH
values. Finally, comparison of the expressions (49),
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 with the expres-

sion (58) for DH solutions 
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 in Appendix A
shows that in two-component case the principal differ-
ence between these solutions there is not only inside the
probe particle self-spheres, but also in the rest of space.

Namely, out of these self-spheres 
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Eq. (18), (27) and (37). This fact justifies the usage in
[7–10] the constants which are close to 
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 and 
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 instead
of DH constants.

CONCLUSIONS

The analysis of non-physical properties of Debye-
Hückel’s method was continued in this paper in the case
of two-component systems and it was found the proce-
dure for their elimination within the same basic model.
Owing to that it is developed a new model method for
describing of the inner-plasma electrostatic screening
in two-component systems (electron-ion and dusty
plasmas, some electrolytes, etc.), which is free of the
mentioned non-physical properties and could be
applied for the systems with higher non-ideality degree.

It was demonstrated that all new screening parame-
ters, determined in the previous paper for the single-
component systems (one characteristic length and two
non-ideality parameters), have the analogous parame-
ters which characterize each component in two-compo-
nent systems. Besides, it was introduced into consider-
ation a new parameter (the coefficient of the electron-
ion correlation) which characterizes just two-compo-
nent systems.
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APPENDICES

APPENDIX A

DH Solutions 

In DH method it is assumed that for determination

of  and , apart of Eqs. (11), it can be applied the
equations

(56)

which represent the linearized form of the equations:

µe, i( (r), Te, i) + Ze, ieΦ(i, e)(r) = µe, i(Ne, i, Te, i). Within
DH method equations (11) and (56) apply together in
order to express the charge densities in the Poison’s
equations (5) through the electrostatic potential in the
whole region 0 < r < ∞. That way, in accordance with
Eqs. (1)–(3) and (5) one obtains Helmholtz’s equation

(57)

where κD is DH screening constant, and κ0; i and κ0; e are
the partial screening constants defined by Eqs. (18)
and (27).

DH electrostatic potential (r) represent the
solutions of equation (57), which is obtained in the
whole space under the boundary conditions (6) and (7).
Then, by means of Eqs. (11) and (56) DH solutions for
the charge and particle densities are obtained. All these
solutions are given by the expressions

(58)

(59)

(60)

where the screening constant κD is given by (57). From
Eqs. (7), (8) and (58) it follows that DH potential
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APPENDIX B

The System 
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 We will start from the fact
that the different electron-ion and dusty plasmas can be
successfully described in the approximation of fixed
heavy charged particles (see e.g. [11–15]). In accor-
dance with this, we will treat the electronic component

of the system  considering all ions as immobile with
respect to electrons, keeping in mind that in such a case
the difference between the probe particle and ions does
not exist regarding the electrons. In Fig. 2 the several of
ions self-spheres (sphere with the radius 

 

r

 

s

 

;

 

 

 

i

 

, centered
on ions) in the neighborhood of the probe particle (the
point 

 

O

 

) are schematically shown. This figure should
make more apparent the fact that the behavior of the
electron inside the self-sphere of an ion in the point 

 

O

 

'

 

,
far from the point 

 

O

 

, has to be almost completely caused
by its interaction with few ions which are close to the
point 

 

O

 

'

 

. Because of that, in further considerations all
ions are treated equally with the probe particle.

Here, we will denote by (

 

i

 

; *) the possible ion con-

figuration in the system 

 

,

 

 and by 

 

(

 

r

 

)

 

 and

 

(

 

r

 

)

 

—the corresponding electron and ion densi-

ties. Also, we will denote by 

 

(

 

r

 

)

 

 an average value

of  within the part of space consisting of the out-
ing of probe particle’s and all ion’s self-spheres (see
shadowed area in Fig. 2). The condition of the thermo-
dynamical equilibrium of the electron component in the
case of a configuration (

 

i

 

; 

 

∗

 

) has the form

 

(62)

 

where 

 

Φ

 

(

 

i

 

; 

 

∗

 

)

 

(

 

r

 

)

 

 is the corresponding total electrostatic

potential, and 

 

 

 

is any point where 

 

(

 

r

 

) =

 
. Finally, taking the chemical potentials

 µ  
e

 ( (  r  ),  T  
e

 )   in (62) as series of the differences 
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) – 
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 along with keeping only first two mem-

bers, we obtain 
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 in the form
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In contrast to (11), the equation (63) can be applied
practically in the whole space, which is allowed by the
behavior of the electron component in the presences of
the positive charged particles.

In accordance with the described picture, the sought

electron and ion densities 

 

(

 

r

 

)

 

 and 

 

(

 

r

 

)

 

 are treated

here as a result of averaging of all densities 

 

(

 

r

 

)

 

and 

 

(

 

r

 

)

 

. Because of the structure of Eq. (63) we

will have that 

 

(

 

r

 

) = 

 

N

 

e

 

;

 

 st

 

 + 

 

n

 

e

 

;

 

 

 

d

 

(

 

r

 

)

 

, where 

 

N

 

e

 

;

 

 

 

st

 

 and

 

n

 

e

 

;

 

 

 

d

 

(

 

r

 

)

 

 are the mean values of the first and second mem-
bers in Eq. (63). Taking the member 

 

n

 

e

 

;

 

 

 

d

 

(

 

r

 

)

 

 as series of

the differences [

 

(

 

r

 

) – 

 

N

 

i

 

] along with keeping only first

two members, we obtain that 

 

(

 

r

 

) = 

 

N

 

e

 

;

 

 

 

st

 

 + 

 

ne; d(r

= ∞) + K[ (r) – Ni], where accordingly to the bound-
ary condition (3) the member ne; d(r = ∞) has to satisfy
the equality ne; d(r = ∞) = Ne – Ne; st. Finally, taking that

K = αZi we obtain the mean electron density (r) in
the form

(64)

This relation shows that (r) in the region r >

rs; i (r) can be expressed by means only one
unknown parameter α.

The region 0 < r < rs; i: the basic equation. Let (s; ∗)
denotes such an ion configuration in which the probe

particle self-sphere is left free of ions, and (r)—
the corresponding electron density. The member ne; s(r)
in (22) will be identified with the result of averaging of

densities (r) over all configurations (s; ∗) in the
region 0 < r ≤ rs; i .

The corresponding condition of the thermodynami-
cal equilibrium in the case of a configuration (s; ∗)
obtains from (62) replacing the index (i, ∗) by (s, ∗) and

fixing the point  = rst, where rst ≤ rs; i . Then,
repeating the procedure of the obtaining of Eq. (63), we
obtain the equation

(65)

where the potentials Φs(r) and Φs(rst) in the considered
region are given by Eq. (53) from Part 1 with the charge
density (–e)ne; s(r). Since all information about the out-
ing of the probe particle self-sphere (rs; i < r < ∞) con-
tained in the same constant members in expressions for
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, the difference 

 

Φ

 

s

 

(

 

r

 

st

 

)

 

 – 

 

Φ

 

s
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 in
Eq. (65) is given by

 

(66)

 

From Eqs. (65) and (66) it follows the equation (26)
for direct determination of the member 

 

n

 

e

 

;

 

 

 

s

 

(

 

r

 

)

 

. In order
to find the solution of the equation (26), we will intro-
duce the function 

 

S

 

(

 

r

 

)

 

 given by relation

 

(67)

 

Consequently, Eq. (26), after the multiplication by 

 

r

 

,
transforms to the equation

 

(68)

 

Applying the operator  to left and right sides of (68)

we obtain the equation

 

(69)

 

which can be presented in the form

 

(70)

 

From Eqs. (67) and (70) it follows that in the general
case 

 

n

 

s
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 is given by the relation

 

(71)

 Taking the coefficients  A  and  B  in the form 
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we will present Eq. (26) as
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(73)

 

From here it follows the equation

 

(74)

 

which can be presented in the form

 

(75)

 

where in the general case 

 

r

 

 

 

≠

 

 

 

r

 

st

 

. This means that the
coefficients 

 

a

 

 and 

 

b

 

 have to satisfy the condition

 

(76)

 

which provides that unknown parameter 

 

r

 

st

 

 disappears
from further considerations, and that 

 

ρ

 

s

 

(

 

r

 

)

 

 given by
Eqs. (71) and (72) really satisfies the equation (26). Then,
from Eqs. (71) and (72) it follows the sought expression
(28) for the member ne; s(r). Finally, from Eqs. (25) and
(28) it is obtained the other condition which is necessary
for the determination a and b, namely

(77)

where the free parameter α has to be determined from
the condition (23).

APPENDIX C

The System 

The region: rs; e < r < •. In the case (e) we will start
from the fact that the fixed probe particle with the
charge (–e) principally can not be represented as a free
electron in the system Sin from the aspect of the interac-
tion with positive ions, since their average distribution
in the neighborhood of such a particle would resemble
to a distribution of positive ions in plasma in the neigh-
borhood of a heavy negative ion.

The exit from this situation is the treatment of acces-

sory system  as a single component one with the elec-
tron gas on the corresponding positive charged back-
ground, which, contrary to the background described in
Part 1, is not homogeneous. We keep in mind the back-
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ground with the charge density taken in the form

 

Z

 

i

 

e

 

(

 

r

 

)

 

, which in the classical case is able to model the
average distribution of positive charge in the neighbor-
hood of an electron in the system 

 

S

 

in

 

. If sought distribution

is found, the factor 

 

(

 

r

 

)

 

 could be treated as the corre-
sponding ion density. Here we use the fact that such a dis-
tribution can be found since existing conditions which

establish correspondence between the systems 

 

 

 

and 

 

S

 

in

 

are enough for determination of all needed parameters.
One of the mentioned conditions is that the behavior

of 

 

(

 

r

 

)

 

 and 

 

(

 

r

 

)

 

 reflect the existence of the elec-
tron-ion correlation (discussed in Section 3.1) which is
characterized by the coefficient 

 

α

 

. We will take into
account that this coefficient in the case (

 

e

 

) can be
treated as the probability of the following event: the
decreasing of number of electrons for 

 

Z

 

i

 

 in the region

 

r

 

s

 

;

 

 

 

e

 

 < 

 

r

 

 < 

 

∞

 

 coincides with the decreasing of the number
of ions for unity. This means that in this case we have
the relation
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which connects 
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 and 
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 in the region 
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 < 
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 by means of the known parameter 

 

α

 

. In Section
3.2 the relation (78) is taken as the starting point for the

determination 

 

(
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 and 

 

(

 

r
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 outside of probe par-

ticle self-sphere in the system .

 

The region: 
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 < 
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.

 

 In order to determine the
member 

 

n
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;
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(
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 in Eq. (40) we will take into account the
following facts: (1) the form of 
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 has to be similar
to the form of the member 
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 in the case (i); (2) the

parameters which characterize  n  i  ;    s  (  r  )  have to be closely
connected with the parameters which characterize
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e
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 (3) the procedure of obtaining of 
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 has to
provide automatic applicability for all possible 

 

N

 

e
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e

 

 and 

 

Ti and (4) self-consistence of final expressions.
In accordance with this, the member ni; s(r) will be
taken as a superposition of two dimensionless functions
of dimensionless argument (r/rs; e), given by relations

(79)

(80)

where κ0; e is given by (27), and the screening constant
κs; i is chosen in such a manner which guarantees that
the relation
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is valid for any (
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e

 

), when 0 < 

 

r

 

' < 

 

r

 

s

 

; i and
0 < r'' < rs; e. The coefficients ai and bi in Eq. (79) have
to be found from the conditions (41) and (42).

APPENDIX D

The Interpretation of the Systems Considered 

Let  be the model finite spherical system with
total ion and electron numbers Mi and Me = ZiMi, where
Mi is an integer number, and with the radius  and

volume  determined by relation: Mi/  = Ni .

From here it follows that the system  is neutral as

a whole and Me/  = Ne = ZiNi . We will assume that

in  the ion and electron components can be
treated as gases in states of the thermodynamical equi-
librium with temperatures Ti and Te. In a usual way, we
will treat the basic system Sin as a thermodynamical
limit of the systems , i.e. as the result of transi-

tion: Mi  ∞ and   ∞, under conditions

(82)

In the case (i), we will associate with every system

 an other system , which differs from 
only by the change of one of the free ions for the probe
particle, with the same charge Zie fixed in the center of
that system.

We will take into account that the systems  are
also neutral as a whole. From here follows the relation

(83)

where (r) are the corresponding mean local ion
densities, and

(84)

From (83) and (84), after their multiplication with
(Zie)–1 the equation follows

(85)

Based on it, we have it that

(86)
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 for any 
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≥

 

 0

 

. Here, we

will treat just 

 

n

 

e

 

; 

 

∞

 

(

 

r

 

)

 

 as the mean local ion density in the

accessory systems , i.e. as 

 

(

 

r

 

)

 

. In accordance

with this, from (86) it directly follows that 

 

(

 

r

 

)

 

 has to
satisfy the condition (13) for the case (

 

i

 

).

Since a similar reasoning may be repeated in the
case (

 

e

 

), we can consider the condition (13) must be satis-
fied in both (

 

i

 

) and (

 

e

 

) cases. Finally, it is clear that in the
case when one of components in described systems is
changed with the corresponding background, we obtain
the equation which corresponds to Eq. (21) from Part 1.
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